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1 Introduction 

Air quality European-wide maps based on spatial interpolation and data fusion have been produced 
under ETC/ATNI (resp. previous consortia ETC/ACM and ETC/ACC) since 2005 (Horálek, 2020 and 
references therein). The mapping methodology combines monitoring data, chemical transport model 
results and other supplementary data using a linear regression model followed by kriging of the 
residuals produced from that model (‘residual kriging’). Separate mapping layers (rural, urban 
background, and urban traffic, where relevant) are created separately and subsequently merged 
together into the final map. In order to reflect the three steps applied, the methodology is called 
Regression – Interpolation – Merging Mapping (RIMM). These maps are constructed regularly for the 
main air pollutants (PM10, PM2.5, O3, NO2), based on validated air quality measurement data that are 
reported to EEA by its member countries (for the EU Member States under the AQ Directives) and 
other voluntary reporting countries. In order to add more information on concentration levels in areas 
with no measurements, the EMEP atmospheric dispersion model (produced by Met Norway) has been 
used as a secondary source of information, together with other supplementary data like altitude, land 
cover and meteorological data. 
 
Apart from the validated measurement data, reported by end of September of year YY for data 
corresponding to year YY-1 and uploaded to the EEA’s AQ e-reporting database, preliminary 
measurement data provided up-to-date (UTD) on an hourly basis by many EEA’s member and 
cooperating states are available in this database. The validated data are stored in the so-called E1a 
data set, while the UTD data in the E2a data set of the AQ e-reporting database. In this report, we 
evaluate the use of the E2a data for potential preparing of preliminary spatial maps. To enable early 
creation of such preliminary maps, we also evaluate in this report potential use of modelling output 
from the Copernicus Atmospheric Monitoring Service (CAMS), which is available earlier than the EMEP 
model output. Specifically, we use the ensemble mean (the median of seven regional atmospheric 
dispersion models) forecast and analysis products. Two different CAMS modelling results have been 
used, i.e. CAMS Ensemble Forecast and CAMS Ensemble Interim Reanalysis (which uses the UTD 
measurement data in the reanalysis), on top of the EMEP model output. PM10 and NO2 annual average 
preliminary maps for 2017 based on E2a (UTD) measurement data, including the evaluation of their 
quality have been examined. 
 
Additionally, we examine and discuss a potential substitution of the EMEP model by CAMS modelling 
data in the regular validated maps, taking into account the recommendations of Horálek et al. (2014). 
The comparison is executed for 2017 for the PM10 annual average, the PM2.5 annual average, the ozone 
indicator SOMO35 and the NO2 annual average. Again, the use of three different model products in 
the mapping is evaluated, i.e. CAMS Ensemble Forecast, CAMS Ensemble Interim Reanalysis and EMEP. 
We have not examined another CAMS modelling product, i.e. CAMS Ensemble Validated Reanalysis 
(which uses the validated measurement data in the reanalysis), due to its lately availability for a 
potential use in the routine RIMM spatial mapping. 
 
For comparison of the spatial mapping results using different chemical transport models, we apply a 
thorough evaluation strategy to account for the fact that CAMS assimilates AQ measurement data. We 
specifically take note that CAMS deliberately leaves some stations outside of the assimilation 
procedure to keep them for validation purposes.   
 
Next to the evaluation of the different modelling results in the spatial mapping, the comparison of the 
spatial interpolation mapping results (as routinely prepared, i.e. using the EMEP model outputs) with 
the CAMS Ensemble modelling results have been carried out. The reason for this comparison was to 
verify the assumption that the spatial interpolation maps, where the main input are AQ concentration 
data measured at monitoring stations, are better suited for exposure calculations in urban areas.  
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Chapter 2 describes the methodological aspects. Chapter 3 documents input data and the comparison 
approach. Chapter 4 presents the evaluation of the spatial mapping results using different chemical 
transport models both for the preliminary and regular maps. Chapter 5 shows the evaluation of the 
spatial mapping results with the CAMS Ensemble modelling results. Chapter 6 gives the conclusions 
and recommendations. Annex provides additional difference maps. 
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2 Mapping Methodology 

2.1 Spatial Mapping Methodology: Regression – Interpolation – Merging Mapping (RIMM) 

The Regression – Interpolation – Merging Mapping method (RIMM) routinely used in the spatial 
mapping under ETC/ATNI consists of a linear regression model followed by kriging of the residuals from 
that regression model (residual kriging): 

( ) ),(ˆ...)()()(ˆ 000220110 ssXasXasXacsZ nn +++++=    (2.1) 

where ( )0sẐ  is the estimated concentration at a point so, 

 X1(s0) is the chemical transport modelling data at point so,  
 X2(s0),…, Xn(s0)  are n-1 other supplementary variables at point so, 
 c, a1, a2,,…, an  are the n+1 parameters of the linear regression model calculated based on 

the data at the points of measurement, 

 )(ˆ 0s  is the spatial interpolation of the residuals of the linear regression model at 

point so, based on the residuals at the points of measurement. 
 
For different pollutants and area types (rural, urban background, and for PM10, PM2.5 and NO2 also 
urban traffic), different supplementary data are used. The spatial interpolation of the regression 
residuals is carried out using ordinary kriging, according to  
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where )(ˆ 0s  is the interpolated value at a point so, derived from the residuals of the linear 

regression model at the points of measurement si, i = 1, …, N, 
 N is the number of the measurement points used in the interpolation, which is 

fixed based on the variogram; in any case, 20 ≤ N ≤ 50,  
 X2(s0),…, Xn(s0)  are n-1 other supplementary variables at point so, 
 η(si)  are the residuals of the linear regression model at N points of measurement 

si, i = 1, …, N, 
 λ1,…, λN are the estimated weights based on the variogram, see Cressie (1993). 
 
For PM10 and PM2.5, prior to linear regression and interpolation, a logarithmic transformation to 
measurements and CTM modelled concentrations is executed as that contributes to an improved fit 
of the regression model. After interpolation, a back-transformation is applied. 
 
In the case of PM2.5 map creation, in addition to the PM2.5 measurement data, so-called pseudo PM2.5 
stations are also used, i.e. estimates of PM2.5 concentrations at the locations of PM10 stations with no 
PM2.5 measurement (Horálek et al., 2020). 
 
Separate map layers are created for rural and urban background areas on a grid at resolution of 1x1 
km2 (for PM10, PM2.5 and NO2) and 10x10 km2 (for ozone), and for urban traffic areas at 1x1 km2 (for 
PM10, PM2.5 and NO2). The rural background map layer is based on rural background stations, the urban 
background map layer on urban and suburban background stations and the potential urban traffic map 
layer is based on urban and suburban traffic stations. Subsequently, the separate map layers are 
merged into one combined final map using a weighting procedure based on the population density 
grid at 1x1 km2 resolution, according to 

𝑍̂𝐹(𝑠0) = (1 − 𝑤𝑈(𝑠0)) ∙ 𝑍̂𝑅(𝑠0) + 𝑤𝑈(𝑠0) ∙ 𝑍̂𝑈𝐵(𝑠0) resp.   

𝑍̂𝐹(𝑠0) = (1 − 𝑤𝑈(𝑠0)) ∙ 𝑍̂𝑅(𝑠0) + 𝑤𝑈(𝑠0)(1 − 𝑤𝑇(𝑠0)) ∙ 𝑍̂𝑈𝐵(𝑠0) + 𝑤𝑇(𝑠0) ∙ 𝑍̂𝑈𝑇(𝑠0) (2.3)
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where  )(ˆ
0sZF  is the resulting estimated concentration in a grid cell so for the final map, 

)(ˆ
0sZ R  

is the estimated concentration in a grid cell so for the rural background map layer,
 

)(ˆ
0sZUB  is the estimated concentration in a grid cell so for the urban background map layer, 

𝑍̂𝑈𝑇(𝑠0) is the estimated concentration in a grid cell so for the urban traffic map layer, 

)( 0swU  
is the weight representing the ratio of the urban character of the grid cell so. 

)( 0swT  
is the weight representing the ratio of areas exposed to traffics in a grid cell so.

 

The weight wU(s0) is based on the population density, while the weight wT(s0) is based on the buffers 
around the roads (Section 3.1.3). For details, see Horálek et al. (2020 and references therein). 
 
Such a methodology using the merge of the map layers is particularly efficient at producing high spatial 
variability patterns in fine resolution in the air quality maps since these patterns derive directly from 
the population density and road data.  
 

2.2 CAMS Modelling Data Products 

CAMS is one of the six Copernicus services. CAMS provides a diverse range of environmental 
atmospheric information, which specifically includes the provision of air quality information at a 
regional scale over Europe. This European regional service is of specific interest for this current work. 
The European regional production consists of an ensemble of seven (resp. nine since October 2019)  
air quality models run operationally over the domain outlined in Map 2.1.  
 

 
 
The seven different models considered for this report and the institutes responsible for running each 
one are summarised in Table 2.1. (It should be noted that In October 2019, two other models have 

Map 2.1. Example map showing the spatial extent of the CAMS European regional air quality 
domain. This example shows hourly ozone concentrations (µg m-3) from the CAMS 
Ensemble Forecast during an ozone pollution episode that occurred towards the end of 
July 2019. 
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been added to this set, namely DEHM model run by Aarhus University and GEM-AQ model run by 
Polish Institute of Environmental Protection – National Research Institute.) All of the models are 
chemical transport models, which means they simulate atmospheric chemistry but rely on an external 
meteorological model to provide the weather forecast that governs the transport of pollutants in the 
model. The European Centre for Medium Range Weather Forecasts (ECMWF) provides the 
meteorological data for each of the regional models in CAMS, which ensures homogeneity of input 
data. For further details of each model please consult Marécal et al.  (2015). 
 

Institute Model 

INERIS CHIMERE 

Norwegian Meteorological Institute EMEP/MSC-W 

Rhenish Institute for Environmental Research at the University of Cologne EURAD-IM 

KNMI/TNO LOTOS-EUROS 

Swedish Meteorological and Hydrological Institute MATCH 

Météo France MOCAGE 

Finnish Meteorological Institute SILAM 

 
The models provide four distinct air quality products available on different timescales:  

• a 72-hour forecast made available at 07:00 UTC the day of the forecast;  

• a 24-hour analysis that involves data assimilation of near real time (up-to-date, UTD) surface 
station air quality observations, which is available at 11:00 UTC the day of the forecast;  

• a 24-hour interim reanalysis repeated 20 days later to benefit from short term adjustment in 
UTD observations and complemented for missing days in the first weeks of the following year 
to produce an interim reanalysis available 3 month after the end of a calendar year (in March 
of the year + 1); 

• a yearly validated reanalysis that is a data assimilation product using validated surface station 
data, which is provided as an entire year but only 21 months after the end of a calendar year 
(In September of the year +2).  

 
Each data product is available on an hourly time resolution and at a spatial resolution of 0.1° x 0.1°, i.e. 
ca. 10x10 km2. The output from the seven models are combined together and the median for each grid 
cell and each time step is taken to create an ensemble product. CAMS is currently running a dedicated 
project (coordinated by INERIS) to improve this ENSEMBLE product using more elaborated statistical 
techniques (including machine learning) than this simple median. This improved methodology is 
scheduled to become operational after 2021. Extensive validation and verification demonstrate that 
the ensemble forecast, analysis, and reanalysis have superior skill compared to any of the individual 
model ensemble members (if RMSE, bias and correlation are evaluated together)1.Thus, for this work, 
we will focus on the use of the ensemble products. Furthermore, due to the time delay in creating the 
ensemble validated reanalysis, it was not be possible to use this data product to look at air quality in 
2017. We therefore use only the forecast and interim reanalysis CAMS Ensemble products in this work.  
 
Each model carries out data assimilation of some kind to create its analysis and reanalysis. The models 
use a variety of different assimilation algorithms. In addition, while all of the models use near real time 
surface observations in the assimilation process, a small subset of the models also uses satellite 
observations of air pollutants in the assimilation process. Further, each modelling team chooses to 

 
1 https://atmosphere.copernicus.eu/regional-services 

Table 2.1. A table summarising the chemistry-transport models used in CAMS (before addition of two 
other models in October 2019) and the institutions responsible for running the models  

https://atmosphere.copernicus.eu/regional-services
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assimilate different pollutants in their models. All of this information is summarised and presented in 
more detail in Table 2.2. 

Explaining the technical details of each of the different assimilation methods described in Table 2 is 
beyond the scope of this report. However, we can give a rough idea of the sophistication of each of 
these methods and their expected quality relative to one another. We list each method in order of 
increasing complexity: data fusion by kriging, 3D-variational methods, 3D-First Guess at Appropriate 
Time, Ensemble Kalman Filter, and 4D-variational methods. Note, however, that a higher level of 
complexity does not necessarily translate into increased performance/accuracy levels. 
 

Model Assimilation Algorithm Observations 

CHIMERE Data fusion (external drift kriging) Surface ozone and PM10 

EMEP 3D-variational method NO2 satellite columns; Surface NO2 and 
ozone  

EURAD 4D-variational method NO2 satellite columns; Surface NO2, 
ozone, PM10 and PM2.5 

LOTOS-EUROS Ensemble Kalman Filter Surface ozone 

MATCH 3D-variational method Surface ozone, NO2, CO, SO2, PM10, PM2.5 

MOCAGE 3D/4D-variational method and 3D-First 
Guess at Appropriate Time (FGAT) 

Surface ozone, NO2 and PM10 

SILAM 3D/4D-variational methods Surface ozone, NO2, PM2.5 

 
The use of the ensemble forecast results in the annual air quality mapping will mean that no 
information from surface observations will be contained in the modelling product used in the data 
fusion. However, the ensemble analysis and interim reanalysis products are created by assimilating 
surface observations as presented in Table 2.2, and so the modelling products already contain some 
information from the surface station observations. We will therefore explore and highlight the effect 
of having additional surface observation upon the mapping procedure in the course of this report. 
 

2.3 Use of CAMS Modelling Data in RIMM Spatial Mapping 

In this report, the use of CAMS modelling data in the RIMM spatial mapping is examined. In principle, 
the CAMS modelling data are used as the chemical transport modelling data in Equation 2.1, instead 
of the routinely used EMEP modelling data. 
 
As discussed in Horálek et al. (2014), the potential use of reanalysis (data assimilated) fields in the 
spatial mapping would lead to situations where an observation might be used twice: once for the 
model reanalysis and then again for data fusion mapping. This is not expected to be a problem for the 
actual quality of the map, but it limits the uncertainty analysis, leading to underestimation of the 
resulting map’s uncertainty. Such an underestimation would take place both in cross-validation (if 
applied stations used in reanalysis) and in uncertainty maps (created based on geostatistical theory). 
Thus, it should be kept in mind that a potential use of the CAMS Ensemble reanalysis products in the 
spatial mapping would make the uncertainty analysis of the spatial maps more difficult (and make the 
creation of the uncertainty maps impossible), unless the stations used for the data assimilation in the 
CAMS model were not considered for the production of the spatial maps. 
 
When selecting the CAMS modelling products for examining their use in the RIMM spatial mapping, 
we have chosen (i) the CAMS Ensemble Interim Reanalysis due to its earlier availability compared to 

Table 2.2 A summary of the data assimilation systems used within each of the seven CAMS regional 
models. The table also summarises which observations are assimilated in order to create 
each model analysis.  
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the validated reanalysis and (ii) the CAMS Ensemble Forecast, being a modelling product not using data 
assimilation, see above. In both cases, we use the annual set of the hourly data. In the case of the 
CAMS Ensemble Forecast, for each day we use the first 24 hours of the 72-hour forecast. 
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3 Data Used and Comparison Approach 

3.1 Data Used 

3.1.1 Air quality monitoring data 

Data for preliminary maps: AQ e-reporting E2a data set 

For the preliminary maps (Section 4.1), we have used air quality station monitoring data for the year 
2017 coming from the E2a data set of the Air Quality e-Reporting database (EEA, 2018). The data was 
extracted by the EEA in the first half of the year 2018. The data of the dataflow E2a are being provided 
up-to-date (UTD) on an hourly basis from most of the EEA’s member and cooperating countries. Some 
member states provide an update of these data on a monthly basis, including supplementing this data 
set by PM data coming from stations measuring with gravimetric devices (i.e. not automatically). In 
order to reflect the status of the E2a data set in the first weeks of a year (i.e. in time of potential routine 
construction of interim maps), we have not used the data of the gravimetric stations, which were 
added to the E2a data set in a later stage (this means that we have excluded 99 PM10 stations, 
consisting of 16 rural background, 41 urban/suburban background and 42 urban/suburban traffic 
stations). Like in the routine regular maps (Horálek et al., 2020), only data from stations classified as 
background (for the three types of area, rural, suburban and urban), and also the stations classified as 
traffic for the types of area suburban and urban are used. In addition, only the stations with annual 
data coverage of at least 75 percent are used. 
 
The following pollutants and aggregations are considered:  
PM10  – annual average [µg·m-3], year 2017 
NO2  – annual average [µg·m-3], year 2017 
 
Table 3.1 shows the number of the measurement stations selected for the individual pollutants. Next 
to the stations used in preliminary mapping, the stations used for validation and mutual comparison 
of different map variants are also presented. 
 
As further described in Section 3.2, stations of the E1a dataset (see below) with no E2a data (i.e. 
stations not used in the preliminary mapping) are used for validation of the preliminary map. Next to 
this, cross-validation is additionally applied, based on a subset of the stations used in mapping. The 
subset consists of the stations used in CAMS in the so-called “validation set”. Thus, the total E2a set of 
the stations used in mapping consists of this subset applied in the cross-validation and of “other” 
stations not applied in the cross-validation.  For detailed description of the validation approaches and 
for the motivation of the subset selection, see Section 3.2. 
 

 
Figure 3.1 shows the spatial distribution of the rural and urban/suburban background PM10 stations 
used in the preliminary map creation (i.e. E2a stations, in blue and green) and validation (E1a stations 
not included in the E2a data set, in red). Note that using validated observations (E1a) to test the map 
produced with UTD observations (E2a), also implies that the UTD measurements used in the mapping 

Table 3.1 Number of stations with E2a data selected for each station type as used in mapping of 
preliminary maps and number of stations with E1a data used for their validation, for PM10 
(left) and NO2 (right), 2017 

cross-val. other total cross-val. other total

Rural background 40 153 193 176 68 217 285 176

Urban/suburban background 152 519 671 736 241 602 843 510

Urban/suburban traffic 354 511

Station type

PM10 NO2

mapping (E2 data set) validation 

(E1 data)

mapping (E2 data set) validation 

(E1 data)
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might have been modified in the meanwhile; we are therefore not only testing here the mapping 
algorithm, but the final map itself. Figure 3.2 shows the similar spatial distribution for NO2 stations.  

In both figures, within the E2a stations used in preliminary map creation, the stations used (in blue) 
and not used (in green) in the cross-validation are distinguished. In the figures, traffic stations are not 
shown due to their relatively minor influence in the final 1x1 km2 merged map. 
 

 
 

 

Figure 3.1 Spatial distribution of PM10 background stations used in mapping and validation of 
preliminary maps, 2017 

 

Figure 3.2 Spatial distribution of NO2 background stations used in mapping and validation of 
preliminary maps, 2017 
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Data for regular validated maps: AQ e-reporting E1a data set supplemented by EBAS stations 

For the analysis of the regular validated maps (Section 4.2 and Chapter 5), the same set of the air 
quality station monitoring data for 2017 as applied in the routine 2017 mapping (Horálek et al., 2020) 
has been used, i.e. the data of the E1a data set of the Air Quality e-Reporting database (EEA, 2019). 
The data was extracted by the EEA in January–March 2019. The data of the dataflow E1a is reported 
to EEA by its member and coo perating countries every September and covers the year before the 
deliver. This E1a data set has been supplemented with several EMEP rural stations from the database 
EBAS (NILU, 2019) not reported to the Air Quality e-Reporting database. Specifically, 7 additional 
stations for PM10, 4 for PM2.5, and 6 for NO2. For PM10 and NO2, and also for PM2.5, we use the same 
classification types of stations and areas as we do for the E2a data, i.e. stations classified as background 
(for the three types of area), and also traffic for the types of area suburban and urban. For ozone, we 
use only data from stations classified as background (for the three types of area, rural, suburban and 
urban). 
 
The following pollutants and aggregations are considered:  

PM10  – annual average [µg·m-3], year 2017  
PM2.5  – annual average [µg·m-3], year 2017 
Ozone  – SOMO35 [µg·m-3·d], year 2017 
NO2  – annual average [µg·m-3], year 2017 

In the mapping, all these stations were used, apart from the stations of the so-called “validation set” 
as used in CAMS (see Section 3.2). Only the stations with annual data coverage of at least 75 percent 
have been used, both for the mapping and for the validation.  
 
Table 3.2 shows the number of the stations used in both mapping and validation. In the mapping, rural 
background stations are used for the rural layer, urban and suburban stations for the urban 
background layer and urban and suburban traffic stations for the urban traffic layer (Section 2.1). 
 
For validation of the maps, the CAMS “validation set” is used in this paper, being the set of stations 
not used in the mapping. Next to this validation, cross-validation is additionally applied, based on a 
subset of the stations used in mapping. The subset consists of all stations used in mapping, apart from 
the so-called “assimilation set” as used in CAMS in data assimilation (as described in Table 2.2), and in 
the case of PM2.5 the stations located in Turkey. The reason for not using the Turkish PM2.5 stations in 
the subset is that the area of Turkey is not mapped for PM2.5, due to the lack of rural PM2.5 stations in 
Turkey, see Horálek et al. (2020). For detailed description of the validation approaches and for the 
motivation of the subset selection, see Section 3.2. 
 
Table 3.2 Number of stations selected for each station type, as used in mapping and validation, for 

PM10 (upper left), PM2.5 (upper right), ozone (bottom left) and NO2 (bottom right), 2017 

cross-val. other total cross-val. other total

Rural background 171 139 310 52 108 74 182 20

Urban/suburban background 812 394 1206 179 392 196 588 98

Urban/suburban traffic 747 330

cross-val. other total cross-val. other total

Rural background 75 338 413 120 111 243 354 98

Urban/suburban background 215 618 833 306 323 692 1015 318

Urban/suburban traffic 977

Station type

Ozone NO2

mapping
validation

mapping
validation

Station type

PM10 PM2.5

mapping
validation

mapping
validation
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For the PM2.5 mapping, 163 additional rural background, 683 additional urban/suburban background 
and additional 431 urban/suburban traffic PM10 stations (at locations without PM2.5 measurement) 
have been also used for the purpose of calculating the pseudo PM2.5 station data. 
 
Figures 3.3–3.6 show the spatial distribution of the rural and urban/suburban background stations 
used in the mapping (in blue and green) and in the validation (in red), for different pollutants. In all 
figures, the stations used (in blue) and not used (in green) in the cross-validation are distinguished. 

Only true, not pseudo stations are shown. Traffic stations are not shown due to their relatively minor 
influence in the final 1x1 km2 merged map and their non-occurrence in the validation set.  
 

 
 

  

Figure 3.3 Spatial distribution of PM10 background stations used in mapping and validation, 2017 

 

Figure 3.4 Spatial distribution of PM2.5 background stations used in mapping and validation, 2017 
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3.1.2 Chemical transport modelling data 

CAMS Forecast and Reanalysis Modelling Data 

We use the CAMS Ensemble Forecast and Interim Reanalysis modelling data in the RIMM air quality 
mapping methodology. We have downloaded the CAMS Ensemble Forecast and Interim Reanalysis for 
2017 from the CAMS data archive (Copernicus, 2019). The forecast data is downloaded in GRIB2 format 
and then subjected to post-processing to create a complete time series of the data in NetCDF format. 
The interim reanalysis data is available for download as NetCDF and required no post-processing. 
 

Figure 3.5 Spatial distribution of ozone background stations used in mapping and validation, 2017 

 

Figure 3.6 Spatial distribution of NO2 background stations used in mapping and validation, 2017 
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The forecast and reanalysis products are available at hourly intervals and have a spatial resolution of 

0.1  0.1. All of the models used in the CAMS Ensemble products were ran using the TNO-MACC 
emissions representative of 2011 (Kuenen et al., 2014). The CAMS Ensemble modelling products are 
described in further detail in Section 2.2. 

EMEP MSC-W modelling data 

The chemical dispersion model used in this paper is the EMEP MSC-W (formerly called Unified EMEP) 
model (version rv4.17a), which is an Eulerian model. Simpson et al. (2012) and 
https://github.com/metno/emep-ctm describe the model in more detail. Emissions for the year 2016 
(Mareckova et al., 2018) are used and the model is driven by ECMWF meteorology for the relevant 
year 2017. EMEP (2018) provides details on the EMEP modelling for 2017. The resolution of this model 
run is 0.1° x 0.1°, i.e. circa 10x10 km2. The model run for a year Y based on emission of a year Y-1 and 
meteorology of a year Y is available in the beginning of September of a year Y+1. 
 
All modelling data have been aggregated into the annual statistics and converted to 1x1 km2 grid 
resolution: the data in 0.1° x 0.1° resolution have been imported into ArcGIS and transformed into the 
ETRS89-LAEA5210 projection, subsequently converted into a 100x100 m2 resolution raster grid and 
spatially aggregated into the reference EEA 1x1 km2 grid. The pollutants and parameters used are the 
same as for the monitoring data 
 

3.1.3 Other supplementary data 

Altitude 

We use the altitude data field (in m) of Global Multi-resolution Terrain Elevation Data 2010 
(GMTED2010), with an original grid resolution of 15x15 arcseconds coming from U.S. Geological Survey 
Earth Resources Observation and Science, see Danielson et al. (2011). The data were converted into 
the EEA reference grid in 1x1 km2 grid resolution, as described in Horálek et al. (2020). Next to this, 
another aggregation has been executed based on the 1x1 km2 grid cells, i.e., the floating average of 
the circle with a radius of 5 km around all relevant grid cells. 
 
Meteorological data 

The meteorological parameters used are wind speed (annual average for 2017, in m.s-1) and surface 
net solar radiation (annual average of daily sum for 2017, MWs.m-2). The daily data in resolution 15x15 
arc-seconds were extracted from the Meteorological Archival and Retrieval System (MARS) of ECMWF. 
The data have been imported into ArcGIS as a point shapefile. Each point represents the centre of a 
grid cell. The shapefile has been converted into ETRS89-LAEA5210 projection, converted into a 
100x100 m2 resolution raster grid and spatially aggregated into the reference EEA 1x1 km2 grid. 
 
Satellite data  

The annual average NO2 dataset was constructed from data acquired by the OMI instrument onboard 
the Aura platform.  The OMNO2d product generated by NASA was used as a basis, NASA (2019). The 
tropospheric column was used. All the orbits within a given day (typically observed between 13:00 and 
14:00 local time) are mapped into a 0.25x0.25 degrees grid. For details, see Horálek et al. (2020). The 
parameter used is: 

NO2 – annual average tropospheric vertical column density (VCD) [number of NO2 molecules per 
cm2 of earth surface], year 2017 (aggregated from daily data).  
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Population density 

Population density (in inhabitants.km-2, census 2011) is based on Geostat 2011 grid dataset (Eurostat, 
2014). The dataset is in 1x1 km2 resolution, in the EEA reference grid. For regions not included in the 
Geostat 2011 dataset we use as alternative sources JRC (2009) and ORNL (EEA, 2008) data. For details, 
see Horálek et al. (2020). Next to the basic resolution of 1x1 km2, the floating averaging of the circle 
with radius 5 km around all individual 1x1 km2 grid cells has been prepared. 
 
Land cover 

CORINE Land Cover 2012 – grid 100 x 100 m2, Version 18.5 (09/2016) is used (EEA, 2016). Like in 
Horálek et al. (2020), the 44 CLC classes have been re-grouped into the 8 more general classes. In this 
paper we use five of these general classes, namely High density residential areas (HDR), Low density 
residential areas (LDR), Agricultural areas (AGR), Natural areas (NAT), Traffic areas (TRA). For details, 
see Horálek et al. (2020). Two aggregations are used, i.e. into 1x1 km2 grid and into the circle with 
radius of 5 km. For each general CLC class we spatially aggregated the high land use resolution into the 
1x1 km EEA standard grid resolution. The aggregated grid square value represents for each general 
class the total area of this class as percentage of the total 1x1 km square area.  
 
Road data 

GRIP (i.e.  Global Roads Inventory Dataset) vector road type data is used (Meijer et al., 2018). Based 
on the GRIP data, ratio of area influenced by traffic based on buffers around the roads is used. For 
details, see Horálek (2020). 
 

3.1.4 Synthesis on the timing of observations 

The timing of availability of modelling products and observation datasets is summarized in Table 3.3. 
In the table, the availability of the EMEP, CAMS Ensemble Forecast (CAMS-FC), CAMS Ensemble Interim 
Reanalysis (CAMS-IRA) and CAMS Ensemble validated reanalysis (CAMS-VRA) modelling products is 
presented, together with the E2a and E1a AQ e-reporting observation datasets. The table shows that 
the earliest maps for the previous year (YY-1) could be produced with UTD observation (E2a) and CAMS 
Near real time production (CAMS-FC) as early as in January of the year YY (albeit with the major 
drawback of not relying upon validated data). The maps relying on validated observations could be 
produced in April of the next year (YY+1) based on either EMEP, CAMS-FC or CAMS-IRA model results. 
 
Table 3.3 Timing of availability of modelling products and observation datasets  

 01/YY 02/YY 03/YY 04/YY 05/YY 06/YY 07/YY 08/YY 09/YY 10/YY 11/YY 12/YY 

Model 
CAMS-FC  

(YY-1) 
            

    
CAMS-

IRA  
(YY-1) 

          

          CAMS-VRA  
(YY-2) 

    

                  
EMEP  
(YY-1) 

      

Observations 
E2a  

(YY-1) 
            

      
 E1a*  
(YY-2) 

                 

*) EEA intends to provide the E1a data earlier. 
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3.2 Comparison Approach 

It this report, the evaluation of the maps and their mutual comparison are executed primarily by 
applying the validation set of the stations not used in the mapping. In addition, the ‘leave-one-out’ 
cross-validation and the simple comparison between the measurement and mapped resp. modelled 
values is also used. All comparisons are done separately for rural and urban background stations. 
Traffic stations are not used in the comparisons, due to their limited impact in the 1x1 km2 resolution 
maps. For the number of the stations used in the comparisons, see Section 3.1.1 (Tables 3.1 and 3.2). 
 
The basic evaluation of the maps is based on the simple point observation – grid prediction comparison 
between point measurement data at stations not used in mapping (and model reanalysis) and gridded 
prediction values of the relevant RIMM map (or CAMS Ensemble model output, in Chapter 5). For 
comparisons of the validated maps in different variants (Section 4.2) and the RIMM mapping with the 
CAMS Ensemble model results (Chapter 5), for all pollutants, the "validation set" of the stations as 
applied in CAMS for 2017 data is used. The stations of this set have not been used in the reanalysis in 
CAMS. Similarly, for comparison purposes, they are not used in the creation of the RIMM spatial maps, 
which are analysed in Section 4.2 and Chapter 5 (i.e. regular maps). For comparisons of the interim 
maps (Section 4.1), a validation set is created using the stations with E1a data that are not included in 
the E2a data set (as applied in the interim mapping).  
 
Additionally, the point observation – point cross-validation prediction is applied for comparisons of 
different RIMM variants (Chapter 4). This comparison is performed based on the stations used in the 
RIMM mapping (or a specific subset of these stations, see below), using the ‘leave-one-out’ cross-
validation: The cross-validation method computes the spatial interpolation for each measurement 
point from all available information except from the point in question, i.e. it withholds one data point 
and then makes a prediction at the spatial location of that point. The prediction is compared with the 
measurement value. This procedure is repeated for all measurement points in the available set. Based 
on this, the quality of the predicted values is evaluated. The cross-validation analysis of Chapter 5 is 
based on all stations used in the RIMM mapping. For the comparisons of different variants of RIMM 
mapping (Chapter 4), the stations of the "validation set" of the stations as applied in CAMS (Section 
4.1), resp. the stations used in the mapping apart from the stations of the CAMS "assimilation set" 
(Section 4.2) are applied. The reason for the exclusion of the CAMS assimilation set is to avoid the 
underestimation of the mapping uncertainty for the variant using the CAMS-Ensemble interim 
reanalysis: these stations have been already used in the reanalysis. 
 
In Chapter 5, next to the evaluation based on the CAMS validation set, we also apply simple point 
observation – grid prediction comparison based on all stations. For RIMM (which uses all stations in 
mapping), we apply point observation – grid cross-validation prediction, for consistency resons. 
 
For all comparisons, the main indicators used are root mean squared error (RMSE), relative root mean 
squared error (RRMSE) and bias: 
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where Z(si) is the observed air quality indicator value at the ith point, 

)(ˆ isZ   is the estimated air quality indicator value at the ith point, 

 N is the number of the observational points used in the validation set. 

RMSE and bias are expressed in absolute units, RRMSE is expressed in percent.  

Other indicators are the coefficient of determination R2 and the regression equation parameters slope 
and intercept, following from the scatter plot between the predicted and the observed concentrations. 
 
Lower RMSE and RRMSE and higher R2 generally indicate better performance; bias closer to zero is 
also an indication of better performance. Furthermore, the slope should be as close to 1 as possible 
and the intercept as close to 0 as possible. 
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4 Comparison of RIMM Spatial Mapping Results Using EMEP and CAMS 
Modelling Results 

4.1 Preliminary Maps 

In this section, we examine the interim (also referred to as “preliminary”) maps created based on the 
E2a (UTD) measurement data (Section 3.1.1) and CAMS Ensemble resp. EMEP modelling data (Section 
3.1.2), together with other supplementary data (Section 3.1.3). The reason of this examination is a 
potential creation of spatial maps in preliminary version in the first months of the year subsequent to 
the mapped year, i.e. more than one year earlier compared to the official maps based on the validated 
E1a data. Such preliminary maps are compared with the official reported E1a data and with the maps 
created based on them. The analysis is performed for PM10 annual average and NO2 annual average, 
for 2017 data. Section 4.1.1 presents the analysis for PM10, while Section 4.1.2 for NO2. 
 
For both pollutants, the RIMM spatial mapping procedure has been carried out using three different 
chemical transport model outputs as described in Section 3.1.2, namely the following variants: 

- RIMM using EMEP model output, labelled (E) 
- RIMM using CAMS Ensemble Forecast, labelled (C-FC) 
- RIMM using CAMS Ensemble Interim Reanalysis, labelled (C-IRA) 

 
The evaluation of the maps and their mutual comparison is based primarily on the E1a station data not 
included in the E2a date set. In addition, the evaluation based on the validation set as used in CAMS is 
executed, using the ‘leave-one-out’ cross-validation (see Section 3.2). 
 

4.1.1 PM10 annual average 

Table 4.1 presents the technical details of the interim spatial RIMM maps using different model 
outputs.  It shows the estimated parameters of the multiple linear regression (c, a1, a2, …) and of the 
residual kriging (nugget, sill, range) and includes the statistical indicators of the regression part of the 
mapping. 
 

 
Map 4.1 presents the final merged interim maps of the PM10 annual average, as created using the 
three different models.  

Table 4.1 Parameters of linear regression and spatial interpolation (ordinary kriging) in RIMM 
mapping of PM10 annual average for 2017 preliminary maps in rural background, urban 
background and urban traffic areas for mapping variants using different CTM model outputs 

rural urb. b. urb. tr. rural urb. b. urb. tr. rural urb. b. urb. tr.

coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff.

c (constant) 7.83 2.01 2.23 7.85 1.53 1.94 5.85 0.80 1.88

a1 (CTM model) 0.368 0.397 0.409 0.561 0.594 0.581 0.835 0.839 0.547

a2 (altitude_1km) -0.0004 n. sign. -0.0003 n. sign. -0.0002 n. sign.

a3 (wind speed) n. sign. -0.040 n. sign. -0.068 n. sign. -0.053

a4 (rel. humidity) -0.062 -0.068 -0.055

a5 (CLC_NAT_1km) -0.002 -0.002 -0.002

Adjusted R
2

0.47 0.15 0.30 0.49 0.21 0.37 0.60 0.40 0.37

St. Err.  [µg.m
-3

] 0.244 0.291 0.270 0.24 0.28 0.25 0.21 0.24 0.26

Nugget 0.022 0.018 0.010 0.018 0.020 0.005 0.019 0.013 0.003

Sill 0.054 0.058 0.045 0.046 0.054 0.040 0.038 0.042 0.041
Range  [km] 900 210 290 230 220 290 280 260 410

Linear Regr. Model + 

OK of residuals

(C-IR) CAMS-ENS int. rean.(E) EMEP (C-F) CAMS-ENS forecast

 

Note: Grey empty cells indicate variables not used in the variant of the linear regression model. 
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Map 4.1 Interim concentration map of PM10 annual average, 2017, RIMM methodology using E2a 
(UTD) measurement data and EMEP (top), CAMS-ENS forecast (middle) and CAMS-ENS 
interim reanalysis (bottom) model outputs 
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Table 4.2 presents the evaluation and comparison of the interim maps using three different models, 
based on the E1a station data not included in the E2a data set, for different areas types. Next to the 
analysis for the entire mapping area, we have executed the comparison separately for two distinct 
areas: for areas covered by the E2a data (i.e. for entire area without Italy, Bulgaria, Romania, Serbia, 
Baltic countries, Cyprus and Turkey) and for areas not covered by the E2a data (i.e. for Italy, Bulgaria, 
Romania, Serbia, Baltic countries, Cyprus and Turkey). Additionally, for areas not covered by the E2a 
data, we show separately the urban results for areas outside Turkey and for Turkey, due to much higher 
uncertainty for Turkey compared to the other areas (similarly like in regular maps, Horálek et al., 2020). 
 

Table 4.2 Comparison of different model used in interim RIMM spatial mapping showing RMSE, 
RRMSE, bias, R2 and linear regression from validation scatter plots for PM10 annual mean in 
rural background (top) and urban background (bottom) areas, 2017. Validation set of 
stations has not been used in mapping. Units: µg.m-3 except RRMSE and R2. 

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 5.0 29.6% -0.3 0.626 y = 0.609x + 6.29

(C-FC) CAMS Ensemble forecast 4.6 27.2% 0.8 0.692 y = 0.694x + 6.00

(C-IRA) CAMS Ensemble interim reanalysis 4.5 26.6% -0.2 0.700 y = 0.651x + 5.71

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 2.6 17.5% 0.4 0.804 y = 0.737x + 4.14

(C-FC) CAMS Ensemble forecast 2.6 17.8% 0.4 0.807 y = 0.769x + 3.61

(C-IRA) CAMS Ensemble interim reanalysis 2.6 17.6% 0.3 0.811 y = 0.790x + 3.22

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 7.0 32.9% -2.6 0.564 y = 0.573x + 6.39

(C-FC) CAMS Ensemble forecast 5.8 27.6% 0.2 0.643 y = 0.616x + 8.29

(C-IRA) CAMS Ensemble interim reanalysis 5.7 26.8% -1.8 0.716 y = 0.595x + 6.804

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 12.9 43.0% -5.0 0.378 y = 0.315x + 15.54

(C-FC) CAMS Ensemble - forecast 12.2 40.7% -4.0 0.430 y = 0.325x + 16.24

(C-IRA) CAMS Ensemble - interim reanalysis 13.8 46.1% -5.9 0.302 y = 0.272x + 15.92

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 5.5 22.5% -1.0 0.687 y = 0.682x + 6.75

(C-F) CAMS Ensemble - forecast 5.8 23.5% -1.0 0.658 y = 0.658x + 7.35

(C-IR) CAMS Ensemble - interim reanalysis 6.2 25.5% -1.4 0.611 y = 0.661x + 6.88

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 16.4 48.0% -7.9 0.281 y = 0.227x + 18.38

(C-FC) CAMS Ensemble - forecast 15.3 45.0% -6.2 0.336 y = 0.222x + 20.32

(C-IRA) CAMS Ensemble - interim reanalysis 17.5 51.3% -9.2 0.222 y = 0.186x + 18.48

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 8.0 30.3% -3.3 0.215 y = 0.268x + 15.94

(C-F) CAMS Ensemble - forecast 6.5 24.6% -1.1 0.379 y = 0.383x + 15.11

(C-IR) CAMS Ensemble - interim reanalysis 7.0 26.7% -3.4 0.431 y = 0.431x + 11.53

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 25.3 50.3% -16.8 0.000 not significant regression

(C-FC) CAMS Ensemble - forecast 29.0 57.7% -21.4 0.002 not significant regression

(C-IRA) CAMS Ensemble - interim reanalysis 26.4 52.4% -17.7 0.001 not significant regression

Urban background areas covered by E2a data

Urban background areas not covered by E2a data

Urban background areas not covered by E2a data, apart from TR

Rural background areas not covered by E2a data

Urban background areas not covered by E2a data, Turkey

Rural background areas – entire area
Model used in RIMM spatial mapping

Model used in RIMM spatial mapping
Urban background areas – entire area

Rural background areas covered by E2a data

 
Note: Areas not covered by E2a data are comprised of IT, BG, RO, RS, LT, LV, EE, CY and TR. 
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Lower RMSE and RRMSE and higher R2 generally indicate better performance; bias closer to zero is also 
an indication of better performance. Furthermore, the slope should be as close to 1 as possible and 
the intercept as close to 0 as possible. The table areas highlighted by green shows the statistics of the 
RIMM variant that provides the best performance. For the green highlighting, the ad hoc criterion of 
more than ca. 5% difference (in terms of RMSE, RRMSE and R2) and 0.2 µg.m-3 (in terms of RMSE and 
bias) for result distinguishing has been applied. 
 
Looking at the statistics, one can state that the results are quite satisfactory in general. Nevertheless, 
the performance of the interim map varies between  different areas (see also below discussion of Map 
4.2). As expected, the mapping skills are poorer in the areas with no E2a data, both for rural and for 
urban areas. 
 
In the more detailed analysis of areas not covered by the E2a data, large uncertainties in urban areas 
has been found, whatever the modelled map used,  for the area of Turkey, namely RRMSE of 50% – 
58%  and bias of between -14 µg.m-3 and -25 µg.m-3. The uncertainties in urban areas for areas outside 
Turkey are considerable smaller.  
 
It can be seen that in the areas covered by the E2a data, all three variants give quite similar results. In 
the areas not covered by the E2a data, the variants using CAMS Ensemble model results give better 
results compared to the variant using EMEP; the best results in terms of bias are given by the (C-FC) 
variant. 
 
Figure 4.1 shows the scatter plots of predicted mapped values against the E1a measurement data at 
the stations of the validation set (for the entire area).  
 
Figure 4.1 Correlation between RIMM using EMEP (left), CAMS Ensemble Forecast (middle) or CAMS 

Ensemble Interim Reanalysis (right) mapping values (y-axis) versus measurements from 
rural (top), resp. urban/suburban (bottom) background stations (x-axis) from the validation 
set for PM10 annual average 2017. 
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It can be seen that the results are better in the rural areas compared to the urban background areas.  
 
Table 4.3 presents the additional evaluation of the interim maps in three variants, based on the 
validation set as used in CAMS (i.e. subset of the stations used in the mapping, see Section 3.2), using 
cross-validation, separately for rural and urban background areas. This validation applies for areas 
covered by the E2a (UTD) data only. As the E2a data only are used in the validation, the reservation 
mentioned in Section 3.1.1 does not apply here and the evaluation applies both for the final map and 
for the mapping procedure. 
 

The results presented in Table 4.3 confirm that in the areas covered by the E2a (UTD) data, the quality 
of the spatial interim map is quite satisfactory. 
 
Map 4.2 shows difference maps between the interim RIMM maps (in different variants) and the 
reference RIMM map (Horálek et al., 2020). One can see that the areas with poor coverage of E2a 
stations (see Figure 3.1) gives higher differences, e.g., a large areas of the Balkans, Italy and rural areas 
in Scandinavia. 
 
Based on the results presented in this section, it can be concluded that the areas without E2a stations 
(especially Turkey, see the more detailed analysis above, but also other areas like the Balkans and Italy) 
show too high uncertainties to be visualised in the interim RIMM map (in all variants). 
 
Potentially, the lack of E2a stations in these areas could be substituted by so-called pseudo stations, 
i.e. estimates in the points of stations with E1a data from a year Y-1 and lack of E2a data in a given year 
Y. Such an estimate would be done based on the relation between E2a data and validated E1a data 
from year Y-1 in the points of stations with both E2a data of a year Y and E1a data of a year Y-1. It is 
recommended to investigate such an approach. 

Table 4.3 Comparison of different models used in interim RIMM spatial mapping showing RMSE, 
RRMSE, bias, R2 and linear regression from cross-validation scatter plots based on the CAMS 
validation set of the stations for PM10 annual mean in rural background (top) and urban 
background (bottom) areas, 2017. Units: µg.m-3 except RRMSE and R2. 

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 3.9 23.7% -1.3 0.649 y = 0.530x + 6.41

(C-FC) CAMS Ensemble forecast 3.3 20.0% -1.0 0.755 y = 0.619x + 5.25

(C-IRA) CAMS Ensemble interim reanalysis 3.0 18.2% -1.1 0.810 y = 0.669x + 4.34

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 3.1 15.9% 0.2 0.706 y = 0.787x + 4.30

(C-FC) CAMS Ensemble - forecast 3.0 15.3% 0.4 0.735 y = 0.823x + 3.82

(C-IRA) CAMS Ensemble - interim reanalysis 3.0 15.3% 0.1 0.739 y = 0.860x + 2.85

Rural background areas
Model used in RIMM spatial mapping

Model used in RIMM spatial mapping
Urban background areas
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Map 4.2  Difference map of PM10 annual average, 2017, interim RIMM maps using EMEP (top), CAMS 
Ensemble Forecast (middle) and CAMS Ensemble Interim Reanalysis (bottom) model outputs 
minus reference RIMM map 
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4.1.2 NO2 annual average 

Similar analysis as for PM10 has been conducted for NO2 as well. Table 4.4 presents the technical 
details of the interim spatial RIMM maps of NO2 using different model outputs.   
 

 
Map 4.3 presents the final merged interim maps of the NO2 annual average, as created using the 
three different models. 
 
Table 4.5 presents the evaluation and comparison of the interim maps using three different models, 
for different areas resp. station types. Like for PM10, next to the analysis for the entire mapping area, 
separate comparison for two distinct areas we have been executed: first, for areas covered by E2a data 
(i.e. without Italy, Bulgaria, Romania, Serbia, Cyprus and Turkey) and for areas not covered by the E2a 
data (i.e. for Italy, Bulgaria, Romania, Serbia , Cyprus and Turkey). Additionally, like in the case of PM10, 
for areas not covered by the E2a data, we present separately the urban results for areas outside Turkey 
and for Turkey, due to much higher uncertainty for Turkey compared to another areas. 

Table 4.4 Parameters of linear regression and spatial interpolation (ordinary kriging) in RIMM 
mapping of NO2 annual average for preliminary 2017 maps in rural background, urban 
background and urban traffic areas for mapping variants using different CTM model outputs 

rural urb. b. urb. tr. rural urb. b. urb. tr. rural urb. b. urb. tr.

coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff.

c (constant) 7.76 17.87 22.89 7.49 17.69 22.59 4.44 11.37 16.79

a1 (CTM model) 0.402 0.316 0.389 0.548 0.606 0.678 0.716 0.908 0.982

a2 (altitude_1km) -0.00856 -0.00864 -0.00827

a3 (altitude_5km_r) 0.00893 0.00897 0.00841

a4 (wind speed) -1.020 -2.118 -1.489 -1.037 -1.915 -1.236 -0.717 -1.209 -0.597

a5 (population density) 0.0026 0.0003 0.0030 0.0002 0.0025 0.0002

a6 (OMI satellite) 1.029 1.006 1.046 0.524 n.sign. n.sign. 0.544 n.sign. n.sign.

a7 (LC_NAT_1km) -0.0375 -0.0462 -0.0455

a8 (LC_AGR_1km) -0.0274 -0.0333 -0.0278

a9 (LC_TRA_1km) 0.1069 0.1073 0.0763

a10 (LC_LDR_5km_r) 0.0583 0.0500 0.2173 4.5796 0.0480 0.2228 n. sign. n.sign. 0.1747

a11 (LC_HDR_5km_r) n.sign. 0.1601 0.0786 0.2123 n.sign. 0.1416

a12 (LC_NAT_5km_r) -0.0408 -0.0379 -0.0334

Adjusted R
2

0.776 0.599 0.401 0.776 0.604 0.384 0.804 0.676 0.436

St. Err.  [µg.m
-3

] 2.36 4.76 9.50 2.36 4.73 9.63 2.21 4.28 9.22

Nugget 5 16 61 5 15 51 4 14 56

Sill 5 19 91 5 18 95 4 15 85
Range  [km] 580 0 160 580 230 320 470 250 150

Linear Regr. Model + 

OK of residuals

(C-IR) CAMS-ENS int. rean.(E) EMEP (C-F) CAMS-ENS forecast

 

Note: Grey empty cells indicate variables not used in the variant of the linear regression model. 
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Map 4.3 Interim concentration map of NO2 annual average, 2017, RIMM methodology using EMEP 
(top), CAMS Ensemble Forecast (middle) and CAMS Ensemble Interim Reanalysis (bottom) 
model outputs 
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Table 4.5 Comparison of different models used in interim RIMM spatial mapping showing RMSE, 
RRMSE, bias, R2 and linear regression from validation scatter plots for NO2 annual mean in 
rural background (top) and urban background (bottom) areas, 2017. Validation set of 
stations has not been used in mapping. Units: µg.m-3 except RRMSE and R2. 

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 4.0 45.2% 1.0 0.705 y = 0.718x + 3.50

(C-FC) CAMS Ensemble forecast 3.8 42.9% 0.8 0.730 y = 0.750x + 3.03

(C-IRA) CAMS Ensemble interim reanalysis 3.6 40.1% 0.1 0.754 y = 0.776x + 2.04

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 2.8 42.2% 0.6 0.821 y = 0.887x + 1.35

(C-FC) CAMS Ensemble forecast 2.7 41.5% 0.3 0.814 y = 0.819x + 1.45

(C-IRA) CAMS Ensemble interim reanalysis 2.6 40.3% 0.1 0.824 y = 0.844x + 1.11

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 4.5 44.5% 1.3 0.595 y = 0.533x + 6.41

(C-FC) CAMS Ensemble forecast 4.4 41.8% 1.3 0.640 y = 0.625x + 5.37

(C-IRA) CAMS Ensemble interim reanalysis 4.2 38.5% 0.0 0.668 y = 0.698x + 3.30

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 9.3 41.7% -1.8 0.330 y = 0.345x + 12.89

(C-FC) CAMS Ensemble - forecast 9.0 40.2% -1.6 0.373 y = 0.395x + 11.95

(C-IRA) CAMS Ensemble - interim reanalysis 9.9 44.0% -3.4 0.325 y = 0.381x + 10.52

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 4.3 24.4% 1.4 0.664 y = 0.767x + 5.46

(C-FC) CAMS Ensemble - forecast 4.2 23.7% 1.2 0.669 y = 0.747x + 5.67

(C-IRA) CAMS Ensemble - interim reanalysis 4.1 23.3% 0.2 0.651 y = 0.727x + 5.01

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 10.8 44.1% -3.1 0.266 y = 0.470x + 10.54

(C-FC) CAMS Ensemble - forecast 10.4 42.5% -2.8 0.451 y = 0.520x + 9.41

(C-IRA) CAMS Ensemble - interim reanalysis 11.4 46.7% -4.9 0.450 y = 0.555x + 6.77

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 7.3 32.6% -1.3 0.415 y = 0.290x + 14.27

(C-FC) CAMS Ensemble - forecast 7.1 31.7% -1.3 0.310 y = 0.346x + 13.19

(C-IRA) CAMS Ensemble - interim reanalysis 7.7 34.6% -3.2 0.276 y = 0.345x + 11.14

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 20.5 59.5% -11.7 0.074 y = 0.098x + 19.34

(C-FC) CAMS Ensemble - forecast 19.6 57.1% -9.8 0.076 y = 0.127x + 20.22

(C-IRA) CAMS Ensemble - interim reanalysis 21.7 63.1% -12.9 0.057 y = 0.117x + 17.47

Urban background areas covered by E2a data

Urban background areas not covered by E2a data

Urban background areas not covered by E2a data, apart fromTR

Urban background areas not covered by E2a data, Turkey

Rural background areas – entire area
Model used in RIMM spatial mapping

Model used in RIMM spatial mapping
Urban background areas – entire area

Rural background areas covered by E2a data

Rural background areas not covered by E2a data

 

The results are quite satisfactory in general. Nevertheless, the performance of the interim map varies 
in different areas. 
 
It can be seen that for the urban areas, the mapping skills are poorer in the areas with no E2a data. For 
rural areas, the uncertainty is quite similar in the areas covered and not covered by the E2a data. 
Comparing the different mapping variants, one can see quite similar results for all three variants, with 
slightly better performance of the variants using the CAMS Ensemble model outputs in the rural areas. 
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In a more detailed analysis for areas not covered by E2a data, large uncertainty of the map in urban 
areas for the area of Turkey has been ascertained for all three variants, namely RRMSE of 57% – 63% 
and bias of between -10 µg.m-3 and -12 µg.m-3. The mapping uncertainties in urban areas for areas 
outside Turkey are considerable smaller.  
 
Figure 4.2 shows the scatter plots of predicted mapped values against the E1a measurement data at 
the stations of the validation set (for the entire area). It can be seen that the results are better in the 
rural areas compared to the urban background areas.  
 

 
Table 4.6 presents the additional evaluation of the interim maps in three variants, based on the 
validation set as used in CAMS, using cross-validation, separately for rural and urban areas. 
 
The results presented in Table 4.6 confirm that in the areas covered by the E2a (UTD) data, for which 
this table applies, the quality of the spatial interim map is satisfactory.  
 

Figure 4.2 Correlation between RIMM using EMEP (left), CAMS Ensemble Forecast (middle) or CAMS 
Ensemble  Interim Reanalysis (right) mapping values (y-axis) versus measurements from 
rural (top), resp. urban/suburban (bottom) background stations (x-axis) from the validation 
set for NO2 annual average 2017. 
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Map 4.4 shows difference maps between the interim maps (in different variants) and the reference 
RIMM map (Horálek et al., 2020). 
 
The differences shown in Map 4.4 are not so distinct as in the case of PM10. However, one can see 
noticeable differences in some areas with no E2a data, e.g. in Italy and Turkey. One can see the 
different results for (C-IRA) variant in the Balkan area, compared to both (E) and (C-FC) variants.  
 
Like in the case of PM10, there is a need to improve the estimation of the areas with lack of the E2a 
stations. It is recommended to test the feasibility of an approach based on so-called pseudo stations, 
similarly like for PM10. 
 

4.1.3 Conclusion 

Preliminary/interim spatial interpolation (RIMM) air quality maps based on the UTD (E2a) 
measurement data can be constructed as early as March of the following year for the year in question 
(i.e. more than one year earlier than the validated maps), using any of the examined models, when 
available. The CAMS Ensemble Forecast is available in near real time, and so the entire year of model 
data is available in January of the following year, the CAMS Ensemble Interim Reanalysis is available in 
March of the following year, EMEP (based on emission of year Y-1) is available in September of the 
following year. In order to offer the earliest production date, the CAMS Ensemble Forecast could be a 
relevant candidate for the use in the potential interim mapping. 
 
Due to the lack of the E2a data in some areas, the quality of the interim maps in these areas is poorer 
compared to the main part of Europe. Potentially, the lack of E2a stations in these areas could be 
substituted by so-called pseudo stations, i.e., by the estimates at the locations of E1a stations with no 
E2a data, based on the relation between E2a data and validated E1a data from year Y-1. It is 
recommended to investigate such an approach. 
 
We have evaluated here the mapping techniques using preliminary observations and models, but an 
important decision lies within EEA to give the green light for potential production of exposure maps 
not relying on observations validated by the member states. Such potential interim maps should have 
to be treated as preliminary only and could not substitute the regular maps based on the official 
submitted data. 

Table 4.6 Comparison of different model used in interim RIMM spatial mapping showing RMSE, 
RRMSE, bias, R2 and linear regression from cross-validation scatter plots based on the CAMS 
validation set of the stations for NO2 annual mean in rural background (top) and urban 
background (bottom) areas, 2017. Units: µg.m-3 except RRMSE and R2. 

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 2.2 26.2% 0.1 0.689 y = 0.767x + 2.08

(C-FC) CAMS Ensemble forecast 2.3 26.7% 0.1 0.678 y = 0.756x + 2.24

(C-IRA) CAMS Ensemble interim reanalysis 2.6 30.3% 0.5 0.616 y = 0.744x + 2.74

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 4.4 21.5% -0.1 0.675 y = 0.702x + 6.01

(C-FC) CAMS Ensemble - forecast 4.5 21.8% -0.2 0.665 y = 0.668x + 6.61

(C-IRA) CAMS Ensemble - interim reanalysis 4.5 21.8% -0.6 0.670 y = 0.693x + 5.71

Rural background areas
Model used in RIMM spatial mapping

Model used in RIMM spatial mapping
Urban background areas
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Map 4.4 Difference map of NO2 annual average, 2017, interim RIMM map using EMEP (top), CAMS 
Ensemble Forecast (middle) and CAMS Ensemble Interim Reanalysis (bottom) model outputs 
minus reference RIMM map 
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4.2 Validated Maps 

This section examines and compares the performance of the RIMM spatial mapping results using three 
different model outputs (i.e., the EMEP, the CAMS Ensemble Forecast and the CAMS Ensemble Interim 
Reanalysis), with the aim to conclude whether the use of the CAMS Ensemble modelling data instead 
of the EMEP model output improves the mapping results. The analysis is based on 2017 data, with it 
being the most recent year with all data needed available. Contrary to Section 4.1, we use here 
exclusively the E1a measurements as the data official reported by the EEA’s member, cooperating and 
other reporting countries. 
 
In the mapping procedure, all stations apart from the CAMS validation set (see Section 3.2) are used. 
Both the mapping procedure and the data used are the same as in the reference RIMM maps (Horálek 
et al., 2020), apart from this skipping of the validation set’s stations, and the different model used in 
the two of three variants.  
 
The mapping results are evaluated and mutually compared primarily based on the CAMS validation set 
of stations (see above). In addition, evaluation based on the stations used in the mapping – apart from 
the CAMS assimilation set – is executed, using the ‘leave-one-out’ cross-validation (see Section 3.2).  
 
The analysis is performed for four pollutants, i.e. PM10 (annual average), PM2.5 (annual average), ozone 
(SOMO35) and NO2 (annual average). 
 

4.2.1 PM10 annual average 

Table 4.7 presents the technical details of the spatial RIMM maps using different model outputs.  It 
shows the estimated parameters of the multiple linear regression (c, a1, a2, …) and of the residual 
kriging (nugget, sill, range) and includes the statistical indicators of the regression part of the mapping. 
In general, adjusted R2 shows a ratio of a variability estimated by the regression. One can see better 
regression relation for the rural areas compared to the urban (both background and the traffic) areas. 
 

 

Table 4.7 Parameters of linear regression and spatial interpolation (ordinary kriging) in RIMM 
mapping of PM10 annual average for 2017 in rural background, urban background and urban 
traffic areas for mapping variants using different CTM model outputs 

rural urb. b. urb. tr. rural urb. b. urb. tr. rural urb. b. urb. tr.

coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff.

c (constant) 4.27 1.76 2.21 4.44 1.13 2.01 4.32 1.19 2.06

a1 (CTM model) 0.605 0.556 0.447 0.761 0.822 0.572 0.872 0.767 0.538

a2 (altitude_1km) -0.0003 n. sign. -0.0003 n. sign. -0.0003 n. sign.

a3 (wind speed) -0.038 -0.051 -0.059 -0.070 -0.059 -0.072

a4 (rel. humidity) -0.029 -0.034 -0.036

a5 (CLC_NAT_1km) -0.002 -0.002 -0.002

Adjusted R
2

0.71 0.27 0.42 0.71 0.31 0.45 0.77 0.25 0.41

St. Err.  [µg.m
-3

] 0.247 0.380 0.287 0.24 0.37 0.28 0.22 0.39 0.29

Nugget 0.028 0.035 0.019 0.021 0.032 0.014 0.023 0.033 0.014

Sill 0.055 0.086 0.050 0.052 0.079 0.046 0.041 0.073 0.046
Range  [km] 970 740 210 520 630 370 320 550 370

Linear Regr. Model + 

OK of residuals

(C-IR) CAMS-ENS int. rean.(E) EMEP (C-F) CAMS-ENS forecast

 

Note: Grey empty cells indicate variables not used in the variant of the linear regression model. 
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Table 4.8 shows the comparison of the spatial mapping performance using different model outputs. 
The table shows the statistics based on the validation set of the stations. Again, lower RMSE and 
RRMSE and higher R2 indicate better performance; bias closer to zero is also an indication of better 
performance; the slope should be as close to 1 as possible and the intercept as close to 0 as possible.  
 

By comparing the results of the three models applied in the mapping process, one can see quite similar 
performance of all the three variants, with slightly better results of (C-IRA) in rural areas (although only 
52 rural stations are available for testing).  
 
Figure 4.3 shows the validation scatter plots, for both rural and urban background areas. 
 

Table 4.8 Comparison of different models used in RIMM spatial mapping showing RMSE, RRMSE, bias, 
R2 and linear regression from validation scatter plots for PM10 annual mean in rural 
background (top) and urban background (bottom) areas, 2017. Validation set of stations 
has not been used in mapping. Units: µg.m-3 except RRMSE and R2. 

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 3.2 19.7% -1.3 0.704 y = 0.638x + 4.67

(C-FC) CAMS Ensemble forecast 3.1 19.0% -0.9 0.698 y = 0.692x + 4.14

(C-IRA) CAMS Ensemble interim reanalysis 2.9 17.8% -0.9 0.736 y = 0.721x + 3.72

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 3.4 16.9% 0.1 0.747 y = 0.837x + 3.34

(C-FC) CAMS Ensemble - forecast 3.4 17.3% 0.3 0.736 y = 0.832x + 3.59

(C-IRA) CAMS Ensemble - interim reanalysis 3.4 17.3% 0.1 0.746 y = 0.877x + 2.59

Rural background areas
Model used in RIMM spatial mapping

Model used in RIMM spatial mapping
Urban background areas

 

Figure 4.3 Correlation between RIMM using EMEP (left), CAMS Ensemble Forecast (middle) or CAMS 
Ensemble  Interim Reanalysis (right) mapping values (y-axis) versus measurements from 
rural (top), resp. urban/suburban (bottom) background stations (x-axis) from the validation 
set for PM10 annual average 2017. 
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Table 4.9 presents the additional comparison of the maps in three variants, using the cross-validation 
based on the station used in mapping, apart from the CAMS assimilation set. The reason for not using 
the CAMS assimilation set is to prevent the underestimation of the uncertainty for the CAMS variants 
(see Section 3.2). It can be seen that all three variants of the maps give quite similar results. 
 

 
Map 4.5 presents the RIMM spatial maps for PM10 annual average created using different model 
outputs. Annex, Map A.2 presents differences between the spatial maps using different model outputs. 
 
Comparing the results, it should be noted that the ensemble character of both CAMS Ensemble models 
leads to smoothing of high values. This leads into reduced occurrence of high estimates in RIMM maps 
that are based on model output and emission data, not on measurements (e.g. Almeria region). 
 

Table 4.9 Comparison of different models used in RIMM spatial mapping showing RMSE, RRMSE, bias, 
R2 and linear regression from cross-validation scatter plots based on the stations used in the 
mapping apart from the CAMS “assimilation set” for PM10 annual mean in rural background 
(top) and urban background (bottom) areas, 2017. Units: µg.m-3 except RRMSE and R2. 

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 5.4 32.1% 0.8 0.655 y = 0.887x + 2.77

(C-FC) CAMS Ensemble forecast 5.2 30.6% 1.0 0.690 y = 0.912x + 2.47

(C-IRA) CAMS Ensemble interim reanalysis 5.5 32.4% 0.9 0.666 y = 0.924x + 2.16

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 9.4 32.0% -0.8 0.592 y = 0.631x + 10.08

(C-FC) CAMS Ensemble - forecast 9.5 32.5% -0.8 0.582 y = 0.628x + 10.11

(C-IRA) CAMS Ensemble - interim reanalysis 9.5 32.4% -1.0 0.586 y = 0.632x + 9.84

Rural background areas
Model used in RIMM spatial mapping

Model used in RIMM spatial mapping
Urban background areas
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Map 4.5 Concentration map of PM10 annual average, 2017, RIMM methodology using EMEP (top), 
CAMS Ensemble Forecast (middle) and CAMS Ensemble Interim Reanalysis (bottom) model 
outputs 
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4.2.2 PM2.5 annual average 

Table 4.10 presents the technical details of the spatial RIMM maps using different model outputs. 
 

 
Table 4.11 shows the comparison of the spatial mapping performance using different model outputs. 
 

 
One can see quite similar results for all three variants, with slightly improved results for (C-IRA) in the 
rural areas. However, it should be noted that in the rural areas, the validation is based on 20 stations 
only. 
 
Figure 4.4 shows the validation scatter plots, for both rural and urban background areas. 
 

Table 4.10 Parameters of linear regression and spatial interpolation (ordinary kriging) in RIMM 
mapping of PM2.5 annual average for 2017 in rural background, urban background and 
urban traffic areas for mapping variants using different CTM model outputs 

rural urb. b. urb. tr. rural urb. b. urb. tr. rural urb. b. urb. tr.

coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff.

c (constant) 0.84 1.48 0.66 0.40 0.68 0.54 0.11 0.35 1.12

a1 (CTM model) 0.761 0.530 0.839 0.967 0.912 0.865 1.059 1.015 0.591

a2 (altitude_1km) -0.00010 -0.00011 -0.00012

a3 (wind speed) n. sign. n. sign. n. sign.

a4 (CLC_NAT_1km) -0.0024 -0.0025 -0.0021

Adjusted R
2

0.641 0.271 0.587 0.664 0.456 0.584 0.708 0.526 0.496

St. Err.  [µg.m
-3

] 0.31 0.37 0.31 0.30 0.32 0.31 0.28 0.30 0.35

Nugget 0.054 0.018 0.028 0.053 0.016 0.024 0.049 0.016 0.029

Sill 0.083 0.112 0.075 0.087 0.078 0.070 0.077 0.070 0.083
Range  [km] 410 920 360 410 490 360 410 490 360

Linear Regr. Model + 

OK of residuals

(C-IR) CAMS-ENS int. rean.(E) EMEP (C-F) CAMS-ENS forecast

 

Note: Grey empty cells indicate variables not used in the variant of the linear regression model. 

Table 4.11 Comparison of different models used in RIMM spatial mapping showing RMSE, RRMSE, bias, 
R2 and linear regression from validation scatter plots for PM2.5 annual mean in rural 
background (top) and urban background (bottom) areas, 2017. Validation set of stations 
has not been used in mapping. Units: µg.m-3 except RRMSE and R2. 

RMSE RRMSE Bias  R
2

Regr. eq.

E EMEP 1.5 14.7% 0.0 0.859 y = 0.706x + 3.02

C-FC CAMS Ensemble forecast 1.5 14.2% 0.1 0.885 y = 0.69x + 3.24

C-IRA CAMS Ensemble interim reanalysis 1.3 12.1% 0.2 0.916 y = 0.74x + 2.86

RMSE RRMSE Bias  R
2

Regr. eq.

E EMEP 2.3 17.8% -0.2 0.743 y = 0.811x + 2.20

C-FC CAMS Ensemble - forecast 2.3 18.0% -0.3 0.733 y = 0.752x + 2.92

C-IRA CAMS Ensemble - interim reanalysis 2.3 17.7% -0.3 0.744 y = 0.789x + 2.43

Rural background areas
Model used in RIMM spatial mapping

Model used in RIMM spatial mapping
Urban background areas

  

Note: In rural areas, the validation set consists of 20 stations only. 
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Table 4.12 presents the additional comparison of the maps in three variants, using the cross-validation 
based on the station used in mapping, apart from the CAMS assimilation set (see Section 3.2). It can 
be seen that all three variants of the maps give quite similar results. 
 
Table 4.12 Comparison of different models used in RIMM spatial mapping showing RMSE, RRMSE, bias, 

R2 and linear regression from cross-validation scatter plots based on the stations used in the 
mapping apart from the CAMS “assimilation set” for PM2.5 annual mean in rural background 
(top) and urban background (bottom) areas, 2017. Units: µg.m-3 except RRMSE and R2. 

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 2.8 24.2% -0.2 0.803 y = 0.775x + 2.43

(C-FC) CAMS Ensemble forecast 2.8 24.1% -0.1 0.805 y = 0.763x + 2.58

(C-IRA) CAMS Ensemble interim reanalysis 2.8 24.3% -0.3 0.807 y = 0.750x + 2.60

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 2.9 17.8% 0.1 0.819 y = 0.838x + 2.73

(C-FC) CAMS Ensemble - forecast 2.9 17.7% 0.1 0.823 y = 0.868x + 2.27

(C-IRA) CAMS Ensemble - interim reanalysis 3.0 18.0% 0.1 0.816 y = 0.866x + 2.29

Rural background areas
Model used in RIMM spatial mapping

Model used in RIMM spatial mapping
Urban background areas

 

Map 4.6 presents the RIMM spatial maps for PM2.5 annual average created using different model 
outputs. Annex, Map A.4 presents the differences between the spatial maps using different model 
outputs. 
 

Figure 4.4 Correlation between RIMM using EMEP (left), CAMS Ensemble Forecast (middle) or CAMS 
Ensemble  Interim Reanalysis (right) mapping values (y-axis) versus measurements from 
rural (top), resp. urban/suburban (bottom) background stations (x-axis) from the validation 
set for PM2.5 annual average 2017. 
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Map 4.6 Concentration map of PM2.5 annual average, 2017, RIMM methodology using EMEP (top), 
CAMS-ENS Forecast (middle) and CAMS-ENS Interim Reanalysis (bottom) model outputs 
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4.2.3 Ozone – SOMO35 

 
Table 4.13 presents the technical details of the spatial RIMM maps using different model outputs. 
 

 
Table 4.14 shows the comparison of the spatial mapping performance using different model outputs. 
 

 
Very similar results can be seen for all three variants, both in the rural and urban background areas. 
 
Figure 4.5 shows the validation scatter plots, for both rural and urban background areas. 
 
Table 4.15 presents the additional comparison of the maps in three variants, using the cross-validation 
based on the station used in mapping, apart from the CAMS assimilation set (see Section 3.2). It can 
be seen that all three variants of the maps give quite similar results. 
 

Table 4.13 Parameters of linear regression and spatial interpolation (ordinary kriging) in RIMM 
mapping of ozone indicator SOMO35 for 2017 in rural background, urban background and 
urban traffic areas for mapping variants using different CTM model outputs 

rural urb. b. rural urb. b. rural urb. b.

coeff. coeff. coeff. coeff. coeff. coeff.

c (constant) -3138 -1667 -813 2195 144 2412

a1 (CTM model) 0.706 0.601 1.024 0.758 1.063 0.796

a2 (altitude_1km) 0.619 3.046 2.380

a3 (wind speed) n. sign. -508.1 -397.1

a4 (s. solar radiation) 345.7 195.5 n. sign. n. sign. n. sign. n. sign.

Adjusted R
2

0.680 0.533 0.694 0.565 0.730 0.553

St. Err.  [µg.m
-3

] 1674 1716 1637 1656 1538 1680

Nugget 0 7.0E+05 0 6.0E+05 0 7.0E+05

Sill 2.3E+06 2.3E+06 2.3E+06 2.3E+06 2.0E+06 1.8E+06
Range  [km] 20 740 20 740 20 740

Linear Regr. Model + 

OK of residuals

(C-IR) CAMS-ENS int. rean.(E) EMEP (C-F) CAMS-ENS forecast

 

Note: Grey empty cells indicate variables not used in the variant of the linear regression model. 

Table 4.14 Comparison of different models used in RIMM spatial mapping showing RMSE, RRMSE, bias, 
R2 and linear regression from validation scatter plots for ozone indicator SOMO35 in rural 
background (top) and urban background (bottom) areas, 2017. Validation set of stations 
has not been used in mapping. Units: µg.m-3 except RRMSE and R2. 

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 1445 27.4% -74 0.734 y = 0.721x + 1395

(C-FC) CAMS Ensemble forecast 1425 27.1% -119 0.743 y = 0.732x + 1293

(C-IRA) CAMS Ensemble interim reanalysis 1442 27.4% -240 0.742 y = 0.734x + 1141

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 1351 31.3% 136 0.781 y = 0.835x + 754

(C-FC) CAMS Ensemble forecast 1358 31.4% 126 0.777 y = 0.829x + 767

(C-IRA) CAMS Ensemble interim reanalysis 1341 31.1% 167 0.786 y = 0.833x + 794

Rural background areas

Urban background areas
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Table 4.15 Comparison of different models used in RIMM spatial mapping showing RMSE, RRMSE, bias, 

R2 and linear regression from cross-validation scatter plots based on the stations used in the 
mapping apart from the CAMS “assimilation set” for ozone indicator SOMO35 in rural 
background (top) and urban background (bottom) areas, 2017. Units: µg.m-3 except RRMSE 
and R2. 

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 1921 29.9% -158 0.582 y = 0.562x + 2655

(C-FC) CAMS Ensemble forecast 1988 30.9% -173 0.553 y = 0.523x + 2893

(C-IRA) CAMS Ensemble interim reanalysis 1964 30.6% -117 0.560 y = 0.551x + 277

RMSE RRMSE Bias  R
2

Regr. eq.

(E) EMEP 1938 46.5% 0 0.556 y = 0.589x + 1713

(C-FC) CAMS Ensemble - forecast 1967 47.2% -67 0.543 y = 0.573x + 1710

(C-IRA) CAMS Ensemble - interim reanalysis 1951 46.8% -19 0.549 y = 0.562x + 1806

Rural background areas
Model used in RIMM spatial mapping

Model used in RIMM spatial mapping
Urban background areas

 

Based on the results presented in Table 4.14, Figure 4.5 and Table 4.15, we can state that the spatial 
mapping using all three different models gives quite similar statistical results.  
 
Map 4.7 presents the RIMM spatial maps for SOMO35 created using different model outputs. Annex, 
Map A.6 presents the differences between the spatial maps using different model outputs. 
 

Figure 4.5 Correlation between RIMM using EMEP (left), CAMS Ensemble Forecast (middle) or CAMS 
Ensemble  Interim Reanalysis (right) mapping values (y-axis) versus measurements from 
rural (top), resp. urban/suburban (bottom) background stations (x-axis) from the validation 
set for ozone indicator SOMO35, 2017. 
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Map 4.7 Concentration map of ozone indicator SOMO35, 2017, RIMM methodology using EMEP 
(top), CAMS Ensemble Forecast (middle) and CAMS Ensemble Interim Reanalysis (bottom) 
model outputs 
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4.2.4 NO2 annual average 

Table 4.16 presents the technical details of the spatial RIMM maps using different model outputs. 
 

 
Table 4.17 shows the comparison of the spatial mapping performance using different model outputs. 
 

Figure 4.6 shows the validation scatter plots, for both rural and urban background areas. Looking at 
the results presented in Table 4.17 and Figure 4.6, one can conclude that the spatial mapping using 
EMEP and CAMS Ensemble Forecast gives quite similar statistical results. The spatial mapping using 
CAMS Ensemble Interim Reanalysis gives slightly worse result compared to the other two method 
variants in the rural areas. 

Table 4.16 Parameters of linear regression and spatial interpolation (ordinary kriging) in RIMM 
mapping of NO2 annual average for 2017 in rural background, urban background and urban 
traffic areas for mapping variants using different CTM model outputs 

rural urb. b. urb. tr. rural urb. b. urb. tr. rural urb. b. urb. tr.

coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff. coeff.

c (constant) 7.59 24.25 27.98 7.19 24.80 27.84 4.26 22.62 24.87

a1 (CTM model) 0.511 0.146 0.224 0.691 0.570 0.397 0.781 0.474 0.594

a2 (altitude_1km) -0.01000 -0.01049 -0.01041

a3 (altitude_5km_r) 0.00995 0.01071 0.01026

a4 (wind speed) -1.026 -3.275 -2.313 -0.988 -3.078 -2.173 -0.652 -2.954 -1.768

a5 (population density) 0.0025 0.0003 0.0024 0.0003 0.0023 0.0003

a6 (OMI satellite) 1.073 1.367 1.520 0.401 n.sign. 0.886 0.472 0.555 0.668

a7 (LC_NAT_1km) -0.0889 -0.0949 -0.0928

a8 (LC_AGR_1km) -0.0424 -0.0540 -0.0451

a9 (LC_TRA_1km) 0.1024 0.1028 0.0994

a10 (LC_LDR_5km_r) n.sign. 0.0426 0.1872 n.sign. n.sign. 0.1918 n.sign. n.sign. 0.1697

a11 (LC_HDR_5km_r) 0.1799 0.3570 0.1021 0.3792 0.1474 0.3442

a12 (LC_NAT_5km_r) -0.0445 -0.0407 -0.0329

Adjusted R
2

0.800 0.416 0.382 0.800 0.435 0.376 0.823 0.429 0.390

St. Err.  [µg.m
-3

] 2.64 7.28 10.11 2.64 7.16 10.16 2.48 7.20 10.04

Nugget 0 14 41 1 14 41 0 13 41

Sill 7 30 88 7 28 89 6 28 84
Range  [km] 12 270 400 23 240 400 12 260 400

Linear Regr. Model + 

OK of residuals

(C-IR) CAMS-ENS int. rean.(E) EMEP (C-F) CAMS-ENS forecast

 

Note: Grey empty cells indicate variables not used in the variant of the linear regression model. 

Table 4.17 Comparison of different models used in RIMM spatial mapping showing RMSE, RRMSE, bias, 
R2 and linear regression from validation scatter plots for NO2 annual mean in rural 
background (top) and urban background (bottom) areas, 2017. Validation set of stations 
has not been used in mapping. Units: µg.m-3 except RRMSE and R2. 

RMSE RRMSE Bias  R
2

Regr. eq.

E EMEP 2.7 27.8% -0.3 0.777 y = 0.856x + 1.09

C-FC CAMS Ensemble forecast 2.7 27.8% -0.2 0.778 y = 0.871x + 1.04

C-IRA CAMS Ensemble interim reanalysis 2.9 30.3% 0.2 0.739 y = 0.852x + 1.59

RMSE RRMSE Bias  R
2

Regr. eq.

E EMEP 5.2 24.8% 1.0 0.620 y = 0.761x + 5.86

C-FC CAMS Ensemble - forecast 5.2 24.8% 0.9 0.635 y = 0.762x + 5.67

C-IRA CAMS Ensemble - interim reanalysis 5.0 24.0% 0.7 0.622 y = 0.764x + 5.89

Rural background areas
Model used in RIMM spatial mapping

Model used in RIMM spatial mapping
Urban background areas
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Map 4.8 presents the RIMM spatial maps for NO2 annual average created using different model 
outputs. Annex, Map A.8 presents the differences between the spatial maps using different model 
outputs. 
 

Figure 4.6 Correlation between RIMM using EMEP (left), CAMS Ensemble Forecast (middle) or CAMS 
Ensemble Interim Reanalysis (right) mapping values (y-axis) versus measurements from 
rural (top), resp. urban/suburban (bottom) background stations (x-axis) from the validation 
set for NO2 annual average 2017. 
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Map 4.8 Concentration map of NO2 annual average, 2017, RIMM methodology using EMEP (top), 
CAMS Ensemble Forecast (middle) and CAMS Ensemble Interim Reanalysis (bottom) model 
outputs 
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4.2.5 Conclusion 

Based on the evaluation of the results presented, it is not possible to conclude that any of the three 
model datasets gives definitively better results compared to the others. The margins of difference in 
the statistical measures used are so small that many of the differences are likely not statistically 
significant. Such results do not give strong reasons for a potential change of the model used in the 
mapping.  
 
Considering the use of different model outputs in spatial mapping, several remarks can be done, in 
addition to those of Horálek et al. (2014). The ensemble character of both CAMS Ensemble models 
leads into smoothing, which reduces in spatial PM maps the occurrence of high values not based on 
measurements (which may have either negative or positive effect, in dependence of the quality of the 
model and its underlying emissions). Another note is the double counting of station data in the 
reanalysis and in the data fusion mapping, which would cause a more difficult and necessarily reduced 
uncertainty analysis, if CAMS Ensemble Interim Reanalysis is used. The most relevant issue for regular 
mapping probably is that the use of the EMEP model assures better year-to-year consistency of the 
final maps, compared to the ensemble-based CAMS modelling products (based on different model 
applied in different years). This leads into the recommendation for the continued use of the EMEP 
model data in the spatial mapping. 
 
Be it also noted that the use of the CAMS Ensemble Forecast in the mapping does not give in general 
poorer results compared to the use of the CAMS Ensemble Interim Reanalysis, although it does not 
use any data assimilation. (Be aware that the comparison has been applied outside the stations used 
in the data assimilation.)  
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5 Comparison of RIMM Spatial Mapping Results with CAMS Ensemble 
Modelling Results 

In this chapter, the comparison of the RIMM spatial mapping results (as routinely produced under 
ETC/ATNI, i.e. using EMEP) with the CAMS Ensemble modelling results is executed. Namely, the 
following estimates have been compared: 

- RIMM spatial mapping (using EMEP model output), labelled (R) 
- CAMS Ensemble Forecast, labelled (C-FC) 
- CAMS Ensemble Interim Reanalysis, labelled (C-IRA) 

 
The aim of this comparison is to verify the assumption that the RIMM spatial interpolated maps where 
the main input are AQ concentration data measured at monitoring stations, are better suited for 
exposure calculations. 
 
The main comparison performed is between the RIMM spatial mapping and the CAMS Ensemble 
Interim Reanalysis. The CAMS Ensemble Forecast is included in the comparison for illustration only: 
since it does not include any information about observations (only raw model simulations), its quality 
is naturally poorer compared to products utilizing measurement data.  
 
Be it noted that we did not include in the comparison the CAMS Ensemble Validated Reanalysis (which 
has the highest quality out of the CAMS modelling products), as its data for 2017 was not available in 
the time of analysis. 
 
The comparison has been executed by two approaches, i.e., 

- Using all stations, without distinguishing whether used or not used in the mapping resp. 
modelling 

- Using the “validation set” of the stations as used in CAMS. In this case, the Validation set of 
stations is not used in the mapping resp. modelling 

 
In the first approach, all stations as listed in Table 3.2 and shown in Figures 3.3–3.6 are applied for the 
comparison (apart from Turkish stations in the case of PM2.5). In this case, the routine spatial RIMM 
maps (Horálek et al., 2020) created based on all stations are used in the comparison. The reason for 
not using the Turkish PM2.5 stations in the comparison and for not presenting the area of Turkey in the 
spatial PM2.5 map is the lack of the rural PM2.5 stations in Turkey for 2017, see Map 3.4 and Horálek et 
al. (2020).  
 
In the second approach, only the validation set of the stations as listed in Table 3.2 and shown in 
Figures 3.3–3.6 is applied for the comparison. In this case, the spatial RIMM maps created without the 
validation set of the stations (as analysed in Section 4.2) are used in the comparison. 
 
The comparison has been executed for four pollutants and their indicators, i.e. PM10 annual average, 
PM2.5 annual average, ozone indicator SOMO35 and NO2 annual average. 
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5.1 PM10 annual average  

Table 5.1 shows the comparison of the RIMM spatial mapping results (as routinely produced, i.e. based 
on all stations) with two different CAMS Ensemble model results. The scores are calculated against 
observations from all stations. The agreement of the mapped resp. modelled values with the 
measurement data is mutually compared. Next to the simple validation (i.e. simple comparison 
between the mapped resp. modelled and measurement values), cross-validation is also used in the 
case of the RIMM spatial results (see Section 3.2). The reason is that in the simple validation of RIMM, 
the mapping results are compared with the same measurement data, which has already been used in 
the mapping. Thus, the uncertainty estimated based on such simple comparison is underestimated. 
 
The table row highlighted by green shows the statistics that provide the best performance, apart from  
the simple validation of RIMM (highlighted by blue). 
 

Looking at Table 5.1, one can see that the best results are given by the RIMM spatial mapping, both in 
rural and urban areas. Namely, it should be noted that the CAMS Ensemble results (both the Forecast 
and the Interim Reanalysis) are underestimated, especially in the urban, but also in the rural areas.  
 
Figure 5.1 shows the cross-validation resp. validation scatter plots for RIMM and CAMS Ensemble 
Interim Reanalysis results, for both rural and urban background areas. 
 
Table 5.2 shows the comparison of the RIMM spatial mapping results (as used in Section 4.2, i.e. 
without the validation set of the stations) with two different CAMS Ensemble model results, based on 
the validation set of the stations. As the validation set of the stations was not used in the production 
of neither mapping nor modelling results, all the statistics are mutually comparable. 
 

Table 5.1 Comparison of different mapping methods showing RMSE, RRMSE, bias, R2 and linear 
regression from simple (RIMM, CAMS Ensemble Forecast, CAMS Ensemble Interim 
Reanalysis) or cross-validation (RIMM) scatter plots for PM10 annual mean in rural 
background (top) and urban background (bottom) areas, 2017. Units: µg.m-3 except RRMSE 
and R2. 

RMSE RRMSE Bias  R
2

Regr. eq.

RIMM Spatial Mapping 3.7 23.1% 0.3 0.735 y = 0.877x + 2.28

RIMM Spatial Mapping - cross-validation 4.1 25.7% 0.6 0.684 y = 0.854x + 2.88

C-FC CAMS Ensemble forecast 7.0 43.8% -4.9 0.542 y = 0.350x + 5.37

C-IRA CAMS Ensemble interim reanalysis 6.2 38.9% -4.0 0.614 y = 0.356x + 6.27

RMSE RRMSE Bias  R
2

Regr. eq.

RIMM Spatial Mapping 6.1 24.0% -0.4 0.783 y = 0.732x + 6.37

RIMM Spatial Mapping - cross-validation 7.5 29.6% -0.4 0.666 y = 0.693x + 7.40

C-FC CAMS Ensemble - forecast 17.5 69.3% -13.1 0.227 y = 0.130x + 8.94

C-IRA CAMS Ensemble - interim reanalysis 16.8 66.5% -11.8 0.163 y = 0.109x + 10.71

R

Rural background areas

R

Urban background areas
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It can be seen that the RIMM spatial mapping clearly gives the best results, for both rural and urban 
areas, for all statistics. 
 
Map 5.1 presents the concentration map of PM10 annual average for 2017, based on RIMM spatial 
mapping (as routinely produced, Horálek et al., 2020), CAMS Ensemble Forecast and CAMS Ensemble 
Interim Reanalysis results. Annex, Map A.9 shows differences between the RIMM spatial map and the 
CAMS Ensemble Interim Reanalysis results. It can be clearly seen that the RIMM spatial map gives 
higher concentrations compared to the both CAMS Ensemble modelling results in a large part of 
Europe, especially in central and eastern Europe, Po valley, southern Spain and large areas of Turkey.  

Figure 5.1 Correlation between RIMM cross-validated (left) resp. CAMS Ensemble Interim Reanalysis 
(right) mapping values (y-axis) versus measurements from rural (top), resp. urban/suburban 
(bottom) background stations (x-axis) for PM10 annual average 2017. 

   

   

Table 5.2 Comparison of different mapping methods showing RMSE, RRMSE, bias, R2 and linear 
regression from simple scatter plots for PM10 annual mean in rural background (top) and 
urban background (bottom) areas, 2017. Validation set of stations has not been used in 
mapping. Units: µg.m-3 except RRMSE and R2. 

RMSE RRMSE Bias  R
2

Regr. eq.

R RIMM Spatial Mapping 3.2 19.7% -1.3 0.704 y = 0.638x + 4.67

C-FC CAMS Ensemble forecast 7.2 43.9% -5.5 0.250 y = 0.226x + 7.27

C-IRA CAMS Ensemble interim reanalysis 5.6 34.2% -4.0 0.526 y = 0.364x + 6.44

RMSE RRMSE Bias  R
2

Regr. eq.

R RIMM Spatial Mapping 3.4 16.9% 0.1 0.747 y = 0.837x + 3.34

C-FC CAMS Ensemble - forecast 10.3 51.6% -8.2 0.203 y = 0.169x + 7.83

C-IRA CAMS Ensemble - interim reanalysis 8.5 42.6% -6.5 0.602 y = 0.408x + 5.32

Rural background areas

Urban background areas
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Map 5.1 Concentration map of PM10 annual average, 2017, created by routine spatial interpolation 
RIMM methodology (top), CAMS Ensemble Forecast model (middle) and CAMS Ensemble 
Interim Reanalysis model (bottom). 
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5.2 PM25 annual average  

Table 5.3 shows the comparison of the RIMM spatial mapping results (as routinely produced) with two 
different CAMS Ensemble model results, based on all stations.  
 
The table row highlighted by green shows the statistics that provide the best performance, apart from  
the simple validation of RIMM (highlighted by blue). 
 

 
One can see that the best results are clearly given by the RIMM spatial mapping, both in rural and 
urban areas. Like for PM10, the CAMS Ensemble results (both the forecast and the interim reanalysis) 
are underestimated, especially in the urban, but also in the rural areas.  
 
Figure 5.2 shows the cross-validation resp. validation scatter plots for RIMM and CAMS Ensemble 
Interim Reanalysis results, for both rural and urban background areas. 
 

Table 5.3 Comparison of different mapping methods showing RMSE, RRMSE, bias, R2 and linear 
regression from simple scatter plots for PM2.5 annual mean in rural background (top) and 
urban background (bottom) areas, 2017. Units: µg.m-3 except RRMSE and R2. 

RMSE RRMSE Bias  R
2

Regr. eq.

RIMM Spatial Mapping 1.9 17.8% -0.2 0.887 y = 0.786x + 2.03

RIMM Spatial Mapping - cross-validation 2.3 21.2% 0.0 0.827 y = 0.758x + 2.58

C-FC CAMS Ensemble forecast 4.5 42.0% -2.7 0.645 y = 0.399x + 3.75

C-IRA CAMS Ensemble interim reanalysis 3.9 36.5% -1.9 0.722 y = 0.427x + 4.18

RMSE RRMSE Bias  R
2

Regr. eq.

RIMM Spatial Mapping 2.2 14.9% -0.1 0.881 y = 0.881x + 1.65

RIMM Spatial Mapping - cross-validation 2.7 18.3% -0.1 0.822 y = 0.849x + 2.14

C-FC CAMS Ensemble - forecast 7.8 52.1% -5.9 0.452 y = 0.290x + 4.64

C-IRA CAMS Ensemble - interim reanalysis 6.8 45.4% -4.9 0.574 y = 0.343x + 4.87

R

Rural background areas

R

Urban background areas
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Table 5.4 shows the comparison of the RIMM spatial mapping results (as used in Section 4.2) with two 
different CAMS Ensemble model results, based on the validation set of the stations. 
 

The statistics presented in Table 5.4 confirm the results of Table 5.3. It can be stated that the RIMM 
spatial mapping gives the best results, for both rural and urban areas, for all statistics. 
 
Map 5.2 presents the concentration map of PM2.5 annual average for 2017, based on RIMM spatial 
mapping (as routinely produced), CAMS Ensemble Forecast and CAMS-ENS Interim Reanalysis results. 

Figure 5.2 Correlation between RIMM cross-validated (left) resp. CAMS Ensemble Interim Reanalysis 
(right) mapping values (y-axis) versus measurements from rural (top), resp. urban/suburban 
(bottom) background stations (x-axis) for PM2.5 annual average 2017. 

   

       

Table 5.4 Comparison of different mapping methods showing RMSE, RRMSE, bias, R2 and linear 
regression from simple  scatter plots for PM2.5 annual mean in rural background (top) and 
urban background (bottom) areas, 2017. Validation set of stations has not been used in 
mapping. Units: µg.m-3 except RRMSE and R2. 

RMSE RRMSE Bias  R
2

Regr. eq.

R RIMM Spatial Mapping 1.5 14.7% 0.0 0.859 y = 0.706x + 3.02

C-FC CAMS Ensemble forecast 3.9 36.9% -2.3 0.358 y = 0.206x + 6.06

C-IRA CAMS Ensemble interim reanalysis 2.9 27.2% -1.3 0.677 y = 0.357x + 5.50

RMSE RRMSE Bias  R
2

Regr. eq.

R RIMM Spatial Mapping 2.3 17.8% -0.2 0.743 y = 0.811x + 2.20

C-FC CAMS Ensemble - forecast 5.9 46.0% -4.4 0.193 y = 0.181x + 6.14

C-IRA CAMS Ensemble - interim reanalysis 4.6 36.2% -3.2 0.460 y = 0.304x + 5.76

Rural background areas

Urban background areas
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Map 5.2 Concentration map of PM2.5 annual average, 2017, created by routine spatial interpolation 
RIMM methodology (top), CAMS Ensemble Forecast model (middle) and CAMS Ensemble 
Interim Reanalysis model (bottom). 
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Annex, Map A.10 shows differences between the RIMM spatial map and the CAMS Ensemble Interim 
Reanalysis results.  
 
Similarly to the case of PM10, although to the less extent, the RIMM spatial map gives higher 
concentrations compared to both CAMS Ensemble modelling results in a large part of Europe, 
especially in the central and eastern Europe, in the Po valley and in southern Spain. 

5.3 Ozone – SOMO35  

Table 5.5 shows the comparison of the RIMM spatial mapping results (as routinely produced) with two 
different CAMS Ensemble model results, based on all stations.  
 
The table row highlighted by green shows the statistics that provide the best performance, apart from  
the simple validation of RIMM (highlighted by blue). 
 

In Table 5.5 one can see that the best results are given by the RIMM spatial mapping, both in rural and 
urban areas. The difference is smaller than for PM10 and PM2.5.  
 
Figure 5.3 shows the cross-validation resp. validation scatter plots for RIMM and CAMS Ensemble 
Interim Reanalysis results, for both rural and urban background areas. 
 

Table 5.5 Comparison of different mapping methods showing RMSE, RRMSE, bias, R2 and linear 
regression from simple  or cross-validation (RIMM) scatter plots for ozone indicator SOMO35 
in rural background (top) and urban background (bottom) areas, 2017. Units: µg.m-3 except 
RRMSE and R2. 

RMSE RRMSE Bias  R
2

Regr. eq.

RIMM Spatial Mapping 1495 27.5% -188 0.743 y = 0.721x + 1331

RIMM Spatial Mapping - cross-validation 1609 29.5% -190 0.701 y = 0.696x + 1466

C-FC CAMS Ensemble forecast 2125 39.0% -508 0.501 y = 0.505x + 2189

C-IRA CAMS Ensemble interim reanalysis 2309 42.4% -1383 0.604 y = 0.550x + 1067

RMSE RRMSE Bias  R
2

Regr. eq.

RIMM Spatial Mapping 1036 24.0% 72 0.828 y = 0.839x + 769

RIMM Spatial Mapping - cross-validation 1336 31.0% 130 0.720 y = 0.780x + 1078

C-FC CAMS Ensemble forecast 1848 42.8% 750 0.555 y = 0.647x + 2276

C-IRA CAMS Ensemble interim reanalysis 1667 38.6% -255 0.570 y = 0.634x + 1326

R

Rural background areas

R

Urban background areas
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Table 5.6 shows the comparison of the RIMM spatial mapping results (as used in Section 4.2) with two 
different CAMS Ensemble model results, based on the validation set of the stations. 
 

It can be seen that the best results are given by the RIMM spatial mapping, both in rural and urban 
areas. The difference in the rural areas is more remarkable. 
 
Map 5.3 presents the concentration map of ozone indicator SOMO35 for 2017, based on RIMM spatial 
mapping (as routinely produced), CAMS Ensemble Forecast and CAMS-ENS Interim Reanalysis results. 

Figure 5.3 Correlation between RIMM cross-validated (left) resp. CAMS Ensemble Interim Reanalysis 
(right) mapping values (y-axis) versus measurements from rural (top), resp. urban/suburban 
(bottom) background stations (x-axis) for ozone indicator SOMO35 for 2017. 

    

   

Table 5.6 Comparison of different mapping methods showing RMSE, RRMSE, bias, R2 and linear 
regression from simple scatter plots for ozone indicator SOMO35 in rural background (top) 
and urban background (bottom) areas, 2017. Validation set of stations has not been used in 
mapping. Units: µg.m-3 except RRMSE and R2. 

RMSE RRMSE Bias  R
2

Regr. eq.

R RIMM Spatial Mapping 1445 27.4% -74 0.734 y = 0.721x + 1395

C-F CAMS Ensemble forecast 2091 39.7% -460 0.471 y = 0.504x + 2151

C-IRA CAMS Ensemble interim reanalysis 2404 45.6% -1460 0.535 y = 0.515x + 1094

RMSE RRMSE Bias  R
2

Regr. eq.

R RIMM Spatial Mapping 1351 31.3% 136 0.781 y = 0.835x + 754

C-F CAMS Ensemble forecast 1656 37.7% 602 0.608 y = 0.679x + 2010

C-IRA CAMS Ensemble interim reanalysis 1463 33.3% -452 0.675 y = 0.690x + 908

Rural background areas

Urban background areas
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Map 5.3 Concentration map of ozone indicator SOMO35, 2017, created by routine spatial 
interpolation RIMM methodology (top), CAMS Ensemble Forecast model (middle) and CAMS 
Ensemble Interim Reanalysis model (bottom). 
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Annex, Map A.11 shows differences between the RIMM spatial map and the CAMS Ensemble Interim 
Reanalysis results.  
 
Comparing the mapping results of SOMO35, one can see that the RIMM spatial map gives higher 
results in southern Europe and also in the mountainous areas like the Alps and the Pyrenees. 
 

5.4 NO2 annual average  

Table 5.7 shows the comparison of the RIMM spatial mapping results (as routinely produced) with two 
different CAMS Ensemble model results, based on all stations.  
 
Again, the table cells highlighted by green show the statistics that provide the best performance, apart 
from  the simple validation of RIMM (highlighted by blue). 
 

One can see that the best results are given by the RIMM spatial mapping, both in rural and urban areas. 
The difference in the urban areas is more sizeable, compared to the rural areas, which is caused mainly 
by the coarser resolution of the CAMS Ensemble results. It can be seen that the CAMS Ensemble results 
(both the forecast and the interim reanalysis) are clearly underestimated in the urban areas. 
 
Figure 5.4 shows the cross-validation resp. validation scatter plots for RIMM and CAMS Ensemble 
Interim Reanalysis results, for both rural and urban background areas. 
 
Table 5.6 shows the comparison of the RIMM spatial mapping results (as used in Section 4.2) with two 
different CAMS Ensemble model results, based on the validation set of the stations. 
 

Table 5.7 Comparison of different mapping methods showing RMSE, RRMSE, bias, R2 and linear 
regression from simple  or cross-validation (RIMM) scatter plots for NO2 annual mean in 
rural background (top) and urban background (bottom) areas, 2017. Units: µg.m-3 except 
RRMSE and R2. 

RMSE RRMSE Bias  R
2

Regr. eq.

RIMM Spatial Mapping 2.8 32.5% 0.3 0.785 y = 0.878x + 1.31

RIMM Spatial Mapping - cross-validation 2.9 33.7% 0.5 0.769 y = 0.851x + 1.76

C-FC CAMS Ensemble forecast 3.8 43.8% -1.4 0.643 y = 0.698x + 1.23

C-IRA CAMS Ensemble interim reanalysis 3.3 39.0% -0.4 0.676 y = 0.650x + 2.62

RMSE RRMSE Bias  R
2

Regr. eq.

RIMM Spatial Mapping 4.6 22.4% 0.5 0.749 y = 0.781x + 5.02

RIMM Spatial Mapping - cross-validation 5.9 28.4% -0.5 0.602 y = 0.680x + 6.14

C-FC CAMS Ensemble - forecast 12.7 61.4% -10.0 0.299 y = 0.409x + 2.27

C-IRA CAMS Ensemble - interim reanalysis 11.5 55.5% -8.5 0.305 y = 0.372x + 4.50

R

Rural background areas

R

Urban background areas
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It can be seen that the best results are given by the RIMM spatial mapping, both in rural and urban 
areas. The difference in the urban areas is more remarkable. 
 
Map 5.4 presents the concentration map of NO2 annual average for 2017, based on RIMM spatial 
mapping (as routinely produced), CAMS Ensemble Forecast and CAMS Ensemble Interim Reanalysis 
results. Annex, Map A.12 shows differences between the RIMM spatial map and the CAMS Ensemble 
Interim Reanalysis results. Comparing the mapping results, one can see that the RIMM spatial map 
gives higher results in the Balkan area and Turkey, in the Po valley, in southern Spain and in general in 
the urban areas, while lower results in some rural areas in central and north-western Europe. 

Figure 5.4 Correlation between RIMM cross-validated (left) resp. CAMS Ensemble Interim Reanalysis 
(right) mapping values (y-axis) versus measurements from rural (top), resp. urban/suburban 
(bottom) background stations (x-axis) for NO2 annual average 2017. 

    

   

Table 5.8 Comparison of different mapping methods showing RMSE, RRMSE, bias, R2 and linear 
regression from simple  scatter plots for NO2 annual mean in rural background (top) and 
urban background (bottom) areas, 2017. Validation set of stations has not been used in 
mapping. Units: µg.m-3 except RRMSE and R2. 

RMSE RRMSE Bias  R
2

Regr. eq.

R RIMM Spatial Mapping 2.7 27.8% -0.3 0.777 y = 0.856x + 1.09

C-FC CAMS Ensemble forecast 3.5 37.0% -1.1 0.637 y = 0.726x + 1.54

C-IRA CAMS Ensemble interim reanalysis 3.5 36.7% 0.1 0.594 y = 0.632x + 3.62

RMSE RRMSE Bias  R
2

Regr. eq.

R RIMM Spatial Mapping 5.2 24.8% 1.0 0.620 y = 0.761x + 5.86

C-FC CAMS Ensemble - forecast 10.7 51.4% -8.9 0.483 y = 0.612x - 0.87

C-IRA CAMS Ensemble - interim reanalysis 9.4 45.3% -7.7 0.539 y = 0.572x + 1.18

Rural background areas

Urban background areas
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Map 5.4 Concentration map of NO2 annual average, 2017, created by routine spatial interpolation 
RIMM methodology (top), CAMS Ensemble Forecast model (middle) and CAMS Ensemble 
Interim Reanalysis model (bottom). 
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5.5 Conclusion  

From the comparison of the RIMM spatial mapping results with the CAMS Ensemble modelling results, 
one can conclude that the data fusion RIMM method gives better results, as expected, both in the 
rural and urban background areas. This result is highly influenced by the finer resolution of the RIMM 
spatial maps. Among other reason for this, the introduction of additional ancillary data in the data 
fusion probably plays a role, as well as not fully reduced bias in some data assimilations methods 
(Denby et al., 2008), which are used in CAMS.  
 
Based on this, we verify the assumption that the RIMM spatial mapping (where the main input is AQ 
concentration data measured at monitoring stations), is better suited for exposure calculations. 
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6 Conclusions and Recommendations 

The report examines potential use of modelling outputs from the Copernicus Atmospheric Monitoring 
Service (CAMS) in the air quality spatial interpolation mapping. Specifically, the ensemble mean (i.e. 
the median of seven regional atmospheric dispersion models) forecast and interim reanalysis products 
have been examined. All the analysis has been performed for 2017 data. 
 
Preliminary/interim spatial interpolation (RIMM) air quality maps based on the UTD (E2a) 
measurement data can be constructed approximately one year earlier than the validated maps, using 
any of the examined models. With respect to the availability, it is recommended to use the CAMS 
Ensemble Forecast in the potential interim mapping. (Potentially, alternatively might be used the 
CAMS Ensemble Analysis, which was not tested in this report.) Even though we have demonstrated 
the feasibility, potential production of indicator or exposure maps using UTD observations (i.e. not 
official submitted data) should be carefully considered. In addition, the evaluation of the mapping 
performances presented here is influenced by the lack of the E2a data in some areas, so that the quality 
of the interim maps in these areas is poorer compared to the main part of Europe. Potentially, the lack 
of E2a stations in these areas could be substituted by so-called pseudo stations, i.e. by the estimates 
at the locations of E1a stations with no E2a data, based on the relation between E2a data and validated 
E1a data from year Y-1. It is recommended to test the feasibility of such an approach. 
 
Next to the evaluation of the potential interim maps, regular maps based on the validated E1a 
measurement data using three different chemical transport model outputs have been compared, i.e., 
using the CAMS Ensemble Forecast, the CAMS Ensemble Interim Reanalysis and the EMEP model 
outputs. Based on the evaluation of the results presented, it is not possible to conclude that any of the 
three model datasets gives definitively better results compared to the others. Depending on the 
pollutant and areas (urban/rural), one or another model provides better results. The margins of 
difference in the statistical measures used are so small that the differences are likely not statistically 
significant in many cases. Such results do not give strong reasons for a potential change of the model 
used in the mapping. 
 
In addition, RIMM spatial mapping results have been compared with the examined CAMS Ensemble 
modelling results. From the comparison, one can conclude that the data fusion RIMM method gives 
better results, both in the rural and urban background areas, presumably because of the higher spatial 
resolution, introduction of additional ancillary data in the data fusion and not fully reduced bias in 
some data assimilation methods used in CAMS. Based on this, we verify the assumption that the RIMM 
spatial mapping (where the main input are AQ concentration data measured at monitoring stations), 
is better suited for exposure calculations (especially in urban areas) than the CAMS Ensemble Forecast 
and Interim Reanalysis. Be it noted that the comparison of the RIMM spatial maps with CAMS products 
is not complete and exhaustive, as the CAMS Validated Reanalysis model results have not been 
examined  (due to not availability of these results for 2017 in the time of the analysis). 
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7 List of abbreviations 

 
AQ Air quality 
CAMS Copernicus Atmospheric Monitoring Services 
CLC CORINE Land cover 
CORINE Co-ORdinated INformation on the Environment 
CTM Chemical transport model 
ECMWF  European Centre for Medium-Range Weather Forecasts 
EBAS EMEP dataBASe 
EEA  European Environmental Agency 
EMEP European Monitoring and Evaluation Programme 
ETC/ACM  European Topic Centre on Air pollution and Climate change Mitigation 
ETC/ATNI European Topic Centre on Air pollution, Noise, Transport and Industrial pollution 
GMTED Global multi-resolution terrain elevation data 
GRIP Global Roads Inventory Dataset 
JRC Joint Research Centre 
NASA National Aeronautics and Space Administration 
NILU Norwegian Institute for Air Research 
NO2 Nitrogen dioxide 
O3 Ozone 
OMI Ozone Monitoring Instrument 
PM10 Particulate Matter 10 micrometres or less in diameter 
PM2.5 Particulate Matter 2.5 micrometres or less in diameter 
RIMM Regression – Interpolation – Merging Mapping 
SOMO35 Sum of Ozone Maximum daily 8-hour means Over 35 ppb (i.e. 70 µg.m-3) 
UTC Coordinated Universal Time 
UTD Up-to-date 
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Annex  
Difference maps 

 
This annex presents the maps showing differences between individual model results, for four 
pollutants PM10, PM2.5, ozone and NO2, see Figures A1.1, A1.3, A1.5 and A1.7. 
 
Next to this, it shows the maps showing differences between the RIMM spatial maps using different 
model results, again for four pollutants PM10, PM2.5, ozone and NO2. See Figures A1.2, A1.4, A1.6 and 
A1.8. 
 
Finally, it presents the maps showing differences between the RIMM spatial map (as routinely 
produced under ETC/ATNI, i.e. using EMEP) and the CAMS Ensemble Interim Reanalysis modelling 
results, see Figures A1.9–A1.12.  
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Map A.1 Map showing difference in concentrations between CAMS-ENS Forecast and EMEP (top), 
CAMS-ENS Interim Reanalysis and EMEP (middle) or CAMS-ENS Forecast and CAMS-ENS 
Interim Reanalysis (bottom) model outputs for PM10 annual average, 2017 

 

 

 



 

Eionet ETC/ATNI 2019/17 67 

     

     

 

Map A.2 Map showing difference in concentrations between RIMM using CAMS-ENS Forecast and 
RIMM using EMEP (top), RIMM using CAMS-ENS Interim Reanalysis and RIMM using EMEP 
(middle) or RIMM using CAMS-ENS Forecast and RIMM using CAMS-ENS Interim 
Reanalysis (bottom) model outputs for PM10 annual average, 2017 
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Map A.3 Map showing difference in concentrations between CAMS-ENS Forecast and EMEP (top), 
CAMS-ENS Interim Reanalysis and EMEP (middle) or CAMS-ENS Forecast and CAMS-ENS 
Interim Reanalysis (bottom) model outputs for PM2.5 annual average, 2017 
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Map A.4 Map showing difference in concentrations between RIMM using CAMS-ENS Forecast and 
RIMM using EMEP (top), RIMM using CAMS-ENS Interim Reanalysis and RIMM using EMEP 
(middle) or RIMM using CAMS-ENS Forecast and RIMM using CAMS-ENS Interim 
Reanalysis (bottom) model outputs for PM2.5 annual average, 2017 
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Map A.5 Map showing difference in concentrations between CAMS-ENS Forecast and EMEP (top), 
CAMS-ENS Interim Reanalysis and EMEP (middle) or CAMS-ENS Forecast and CAMS-ENS 
Interim Reanalysis (bottom) model outputs for the ozone indicator SOMO35, 2017 
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Map A.6 Map showing difference in concentrations between RIMM using CAMS-ENS Forecast and 
RIMM using EMEP (top), RIMM using CAMS-ENS Interim Reanalysis and RIMM using EMEP 
(middle) or RIMM using CAMS-ENS Forecast and RIMM using CAMS-ENS Interim Reanalysis 
(bottom) model outputs for the ozone indicator SOMO35, 2017 
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Map A.7 Map showing difference in concentrations between CAMS-ENS Forecast and EMEP (top), 
CAMS-ENS Interim Reanalysis and EMEP (middle) or CAMS-ENS Forecast and CAMS-ENS 
Interim Reanalysis (bottom) model outputs for NO2 annual average, 2017 
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Map A.8 Map showing difference in concentrations between RIMM using CAMS-ENS Forecast and 
RIMM using EMEP (top), RIMM using CAMS-ENS Interim Reanalysis and RIMM using EMEP 
(middle) or RIMM using CAMS-ENS Forecast and RIMM using CAMS-ENS Interim 
Reanalysis (bottom) model outputs for NO2 annual average, 2017 



 

Eionet ETC/ATNI 2019/17 74 

     
     

     
     

 
  

Map A.9 Map showing difference in concentrations between RIMM (as routinely produced) and 
CAMS-ENS Interim Reanalysis model output for PM10 annual average, 2017 

 
Map A.10 Map showing difference in concentrations between RIMM (as routinely produced) and 

CAMS-ENS Interim Reanalysis model output for PM2.5 annual average, 2017 
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Map A.11 Map showing difference in concentrations between RIMM (as routinely produced) and 
CAMS-ENS Interim Reanalysis model output for ozone indicator SOMO35, 2017 

Map A.12 Map showing difference in concentrations between RIMM (as routinely produced) and 
CAMS-ENS Interim Reanalysis model output for NO2 annual average, 2017 
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